scholarly journals Spectral and Structural Perspectives of 1,3,3-Trimethyl-2,6-diphenylpiperidin-4-one

In this work, we report spectral, structural and computational studies on 1,3,3-trimethyl-2,6-diphenylpiperidin-4-one (TMP). The molecular structure of the title compound in the ground state has been investigated by DFT-B3LYP method with 6-311G (d,p) basis set. The optimized structural parameters of the title compound acquired from DFT method has been found in accord with the single crystal XRD values. Vibrational and Mulliken analysis, frontier molecular orbitals and molecular electrostatic potential of the title compound have also been calculated and discussed. The small energy gap (EHOMO-ELUMO) show that the charge transfer occurs within the molecule.

2013 ◽  
Vol 665 ◽  
pp. 101-111 ◽  
Author(s):  
K. Sarojini ◽  
H. Krishnan ◽  
Charles C. Kanagam ◽  
S. Muthu

The sulfonamide compound, 4-methyl-N-(2-methylphenyl) benzene sulfonamide has been synthesized and characterized by FTIR, NMR, UV-Vis, single crystal X-ray diffraction and thermal analysis. Density functional (DFT) calculations have been carried out for the title compound by performing DFT level of theory using B3LYP/6-31G (d,p) basis set. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with the experimental IR spectra and they support each other. In addition, atomic charges, frontier molecular orbitals and molecular electrostatic potential were carried out by using density functional theory (DFT/B3LYP) 6-31G (d, p) basis set. The calculated Homo and Lumo energies show that charge transfer occur in the molecule.


2019 ◽  
Vol 16 (9) ◽  
pp. 705-717
Author(s):  
Mehrnoosh Khaleghian ◽  
Fatemeh Azarakhshi

In the present research, B45H36N45 Born Nitride (9,9) nanotube (BNNT) and Al45H36N45 Aluminum nitride (9,9) nanotube (AlNNT) have been studied, both having the same length of 5 angstroms. The main reason for choosing boron nitride nanotubes is their interesting properties compared with carbon nanotubes. For example, resistance to oxidation at high temperatures, chemical and thermal stability higher rather than carbon nanotubes and conductivity in these nanotubes, unlike carbon nanotubes, does not depend on the type of nanotube chirality. The method used in this study is the density functional theory (DFT) at Becke3, Lee-Yang-Parr (B3LYP) method and 6-31G* basis set for all the calculations. At first, the samples were simulated and then the optimized structure was obtained using Gaussian 09 software. The structural parameters of each nanotube were determined in 5 layers. Frequency calculations in order to extract the thermodynamic parameters and natural bond orbital (NBO) calculations have been performed to evaluate the electron density and electrostatic environment of different layers, energy levels and related parameters, such as ionization energy and electronic energy, bond gap energy and the share of hybrid orbitals of different layers.


2020 ◽  
Vol 42 (5) ◽  
pp. 746-746
Author(s):  
Murat Saracoglu Murat Saracoglu ◽  
Zulbiye Kokbudak Zulbiye Kokbudak ◽  
M Izzettin Yilmazer and Fatma Kandemirli M Izzettin Yilmazer and Fatma Kandemirli

Pyrimidine derivatives have biological and pharmacological properties. Therefore, in this study we focused on the synthesis various Pyrimidine derivatives to make noteworthy contributions this class of heterocyclic compounds. In the present study, the new compounds (4-6) were obtained by the reactions of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H)-one (1), 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one (2) and 1-amino-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (3) with dimethyl acetylenedicarboxylate. The structures of these compounds were proved by elemental analysis, FT-IR, 1H and 13C-NMR spectra. In addition to, quantum chemical calculations were made to find molecular properties of the pyrimidin-1(2H)-ylaminofumarate derivatives (4-6) by using DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum chemical features such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, chemical softness, electronegativity etc. values for gas and solvent phase of neutral molecules were calculated and discussed.


2010 ◽  
Vol 64 (4) ◽  
Author(s):  
Özgür Alver ◽  
Mustafa Şenyel

AbstractPossible stable conformers of the 1-(4-pyridyl)piperazine (1-4pypp) molecule were experimentally and theoretically studied by FT-IR and Raman spectroscopy. FT-IR and Raman spectra were recorded in the region of 4000–200 cm−1. Optimized geometric structures related to the minimum on the potential energy surface were investigated by the B3LYP hybrid density functional theory method using the 6-31G(d) basis set. Comparison of the experimental and theoretical results indicates that the density functional B3LYP method provides satisfactory results for the prediction of vibrational wavenumbers and structural parameters and equatorial-equatorial (e-e) isomer is supposed to be the most stable form of the 1–4pypp molecule.


2017 ◽  
Vol 727 ◽  
pp. 381-387
Author(s):  
Chang Ning Peng ◽  
Xing Rong Zheng

Based on the First-principles and the method of quantum chemistry calculations, using the B3LYP method and 6-31G basis set of the density functional theory (DFT), the configurations and binding energy of Nen (n=2~36) clusters are calculated and studied theoretically after the calculation of geometry optimization. By changing the atomic number n of the Nen (n=2~36) clusters, it obtained that the stable structures, the binding energy and HOMO - LUMO energy gap of the Nen (n=2~36) clusters under the same ideal conditions, and summarizes the change rule of the stable configurations, the binding energy and the average bond length of the Nen (n=2~36) clusters.


Author(s):  
Sitthichok Mongkholkeaw ◽  
Apisit Songsasen ◽  
Tanwawan Duangthongyou ◽  
Kittipong Chainok ◽  
Songwut Suramitr ◽  
...  

In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the molecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H...H, H...Cl/Cl...H, H...C/C...H, H...O/O...H and H...S/S...H. π–π interactions between inversion-related molecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the π–π* electronic transition was the major contributor to the absorption peak in the electronic spectrum.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 749
Author(s):  
N. Günay ◽  
Ö. Tamer ◽  
D. Avcı ◽  
E. Tarcan ◽  
Y. Atalay

In this present methodical study, on the basis of the density functional theory (DFT), the first-principles calculations have been employed successfully to study the structural and electronic properties of N-acetyl-DL-methionine (C7H13NO3S) which is a derivative of DL-methionine which is also known DL-2-amino-4-methyl-thiobutanoic acid. Optimized molecular structure, vibrational frequencies and also 13C and 1H NMR chemical shift values of the title compound are provided in a detailed manner by using B3LYP and HSEH1PBE functionals by applying 6-311++G(d,p) basis set for calculations using Gaussian 09W program. The comparison of the calculated values with the experimental values provides important information about the title compound. In addition, the electronic properties (UV-Vis calculations) of the title compound, such as HOMO-LUMO energy values and energy gap, absorption wavelengths, oscillator strengths were performed basing on the optimized structure in gas phase. Moreover, the molecular electrostatic potential surface, dipole moment, nonlinear optical properties, linear polarizabilities and first hyperpolarizabilities and chemical parameters have also been studied.


2019 ◽  
Vol 41 (5) ◽  
pp. 841-841
Author(s):  
Murat Saracoglu Murat Saracoglu ◽  
Zulbiye Kokbudak Zulbiye Kokbudak ◽  
Esra Yalcin and Fatma Kandemirli Esra Yalcin and Fatma Kandemirli

A series of the new 2-oxopyrimidin-1(2H)-yl-urea (3a-c) and thiourea (4a-d) derivatives were synthesized by the reaction of arylisocyanates (2a-c) or arylisothiocyanates (2d-g) and the 1-amino-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (1). The structures of the compounds 3a-c and 4a-d were characterized by elemental analysis, FT-IR, 1H and 13C-NMR spectroscopic techniques. In addition to experimental study in order to find molecular properties, quantum-chemical calculations of the synthesized compounds were carried out by using DFT/B3LYP method with basis set of the 6-311G(d,p). Quantum chemical features such as HOMO, LUMO, HOMO-LUMO energy gap, Ionization potential, chemical hardness, chemical softness, electronegativity, chemical potential, dipole moment etc. values for gas and solvent phase of neutral molecules were calculated and discussed.


2019 ◽  
Vol 23 (15) ◽  
pp. 1681-1687
Author(s):  
Hummera Rafique ◽  
Aamer Saeed ◽  
Fouzia Perveen ◽  
Naghmana Kausar ◽  
Zaman Ashraf ◽  
...  

Carbazole derivatives have extensive π–conjugation due to which they are excellent organic electronics and show semiconducting properties. Carbazole-based various materials are important candidates due to their excellent redox and luminescent properties and good thermal and environmental stability, therefore, carbzole nucleus was chosen for exploring these properties. The title compound was recrystallized from a methanol solution in orthorhombic space group P 212121 with unit cell dimensions a = 9.663(2), b = 10.764(3), c =18.139(4), V= 1886.7(7) Å3, Z=4. Density functional theory (DFT) calculations have been carried out for the title compound using the 6-31G(d) basis set. The calculated results showed that the theoretically predicted geometry can well reproduce the experimentally calculated structural parameters.


Sign in / Sign up

Export Citation Format

Share Document