scholarly journals Implementation of Cloud Security by Identity Based Encryption

2019 ◽  
Vol 8 (4) ◽  
pp. 9812-9816

This paper presents the concept of encrypting the Data from the client to the client. But using some Key generator which sets the password for sending the information. In this concept, we have two types of passwords those are Private Key and Cloud outsourced key. The password will be sent to the client through email by using unique human identity, example Special Name, user id, IP address, etc. This Paper Deals with the client, private key generator and cloud. First, the user has to register by giving their basic details for having user name and password, have to enter their personal details, including contact number, email id, country, etc. When the user Id has created, they have to log through the client login. If they have an account they can be logged in if they are not having an account, they have to register. If any loss of password can reset the password by providing the email Id. This Paper can provide the Security of the user Data. In this Paper we are using cloud storage system.

Author(s):  
Mojtaba Bahramian ◽  
Elham Hajirezaei

Identity-Based Encryption is a public key cryptosystem that uses the receiver identifier information such as email address, IP address, name and etc, to compute a public and a private key in a cryptosystem and encrypt a message. A message receiver can obtain the secret key corresponding with his privacy information from Private Key Generator and he can decrypt the ciphertext. In this paper, we review Boneh-Franklin’s scheme and use bilinear map and Weil pairing’s properties to propose an identity-based cryptography scheme based on isogeny of elliptic curves.


2013 ◽  
Vol 8 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Shengbao Wang ◽  
Zhenfu Cao ◽  
Qi Xie ◽  
Wenhao Liu

Author(s):  
Kannan Balasubramanian ◽  
M. Rajakani

Identity-based cryptosystems were introduced to overcome one of the main problems in public key encryption, the generation of public and private keys. In the identity-based cryptosystem, an identifier such as an e-mail address of a user can be used to generate public and private keys by a trusted third party. The trusted third party uses a system-wide master secret to provide private keys to a user. Identity-based cryptosystems can be constructed using the idea of pairings. This article discusses four different identity-based cryptosystems: the Boneh-Franklin scheme, the Cock's scheme, the Authenticated IBE scheme and the Hierarchical IBE scheme. This article also discusses the security notions considered for the identity-based cryptosystem. The security notions considered are: one-wayness, indistinguishability, semantic security and non-malleability. An architecture consisting of a public parameter server and private key generator for the implementation of the identity-based cryptosystems is also discussed.


2019 ◽  
Vol 494 ◽  
pp. 193-207 ◽  
Author(s):  
Xiaojun Zhang ◽  
Yao Tang ◽  
Huaxiong Wang ◽  
Chunxiang Xu ◽  
Yinbin Miao ◽  
...  

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 913
Author(s):  
Lifeng Guo ◽  
Jing Wang ◽  
Wei-Chuen Yau

Security is a main concern for the Internet of Things (IoT) infrastructure as large volumes of data are collected and processed in the systems. Due to the limited resources of interconnected sensors and devices in the IoT systems, efficiency is one of the key considerations when deploying security solutions (e.g., symmetric/asymmetric encryption, authentication, etc.) in IoT. In this paper, we present an efficient Hierarchical Identity-Based Encryption (HIBE) system with short parameters for protecting data confidentiality in distributed IoT infrastructure. Our proposed HIBE system has the public parameters, private key, and ciphertext, each consisting of a constant number of group elements. We prove the full security of the HIBE system in the standard model using the dual system encryption technique. We also implement the proposed scheme and compare the performance with the original Lewko–Waters HIBE. To the best of our knowledge, our construction is the first HIBE system that achieves both full security in the standard model and short parameters in terms of the public parameters, private key, and ciphertext.


2014 ◽  
Vol 23 (03) ◽  
pp. 1450033 ◽  
Author(s):  
MIAOMIAO TIAN ◽  
LIUSHENG HUANG ◽  
WEI YANG

Fuzzy identity-based encryption (FIBE) scheme is a kind of identity-based encryption (IBE) scheme, in which any user's identity is composed by a set of attributes and any ciphertext encrypted under identity ID can be decrypted by using a private key corresponding to identity ID′ if ID′ is close to ID as measured by some metric. Due to the error-tolerance property, FIBE scheme is very useful in real-world applications. However, most FIBE schemes are provable secure only in a weaker security model. In order to eliminate this problem, Ren et al. recently proposed a new FIBE scheme and proved that it is fully chosen-ciphertext secure in the standard model. Unfortunately, in this paper, we will show that their FIBE scheme is even not chosen-plaintext secure.


Author(s):  
Kannan Balasubramanian ◽  
M. Rajakani

The concept of Identity Based Cryptography introduced the idea of using arbitrary strings such as e-mail addresses and IP Addresses to form public keys with the corresponding private keys being created by the Trusted Authority(TA) who is in possession of a system-wide master secret. Then a party, Alice who wants to send encrypted communication to Bob need only Bob's identifier and the system-wide public parameters. Thus the receiver is able to choose and manipulate the public key of the intended recipient which has a number of advantages. While IBC removes the problem of trust in the public key, it introduces trust in the TA. As the TA uses the system-wide master secret to compute private keys for users in the system, it can effectively recompute a private key for any arbitrary string without having to archive private keys. This greatly simplifies key management as the TA simply needs to protect its master secret.


Author(s):  
Kannan Balasubramanian ◽  
M. Rajakani

The concept of identity-based cryptography introduced the idea of using arbitrary strings such as e-mail addresses and IP addresses to form public keys with the corresponding private keys being created by the trusted authority (TA) who is in possession of a systemwide master secret. Then a party, Alice, who wants to send encrypted communication to Bob need only Bob's identifier and the systemwide public parameters. Thus, the receiver is able to choose and manipulate the public key of the intended recipient which has a number of advantages. While IBC removes the problem of trust in the public key, it introduces trust in the TA. As the TA uses the systemwide master secret to compute private keys for users in the system, it can effectively recompute a private key for any arbitrary string without having to archive private keys. This greatly simplifies key management as the TA simply needs to protect its master secret.


Sign in / Sign up

Export Citation Format

Share Document