scholarly journals Optimal Process Parameters to Achieve Maximum Tensile Load Bearing Capacity of Laser Weld Thin Galvanized Steel Sheets

2019 ◽  
Vol 8 (4) ◽  
pp. 11682-11687

Steels are protected against corrosion through hot-dip galvanization in which material surfaces are coated with molten zinc. Galvanized steel products are reliable in coating life and performance with lower maintenance and repair cost. Welding of such zinc coated steel sheets is of great economic importance in the automotive industries. Many researchers have utilized the S/N ratio transformation while obtaining the optimal solution of several manufacturing processes. However, the additive law in Taguchi technique estimates the deterministic output response from the mean values of the ANOVA table and unable to provide the expected range of the output response. This paper deals with optimal process parameters for achieving maximum tensile load bearing capacity of laser weld thin galvanized steel sheets utilizing the concepts of a modified Taguchi design of experiments. Excepted range of the tensile load bearing capacity is provided for the specified laser process parameters. Empirical relation is developed and validated for the tensile load bearing capacity in terms of the laser process parameters viz., laser power, welding speed and focal point position

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ján Viňáš ◽  
Ľuboš Kaščák ◽  
Miroslav Greš

Abstract The paper presents the results of resistance spot welding of hot-dip galvanized microalloyed steel sheets used in car body production. The spot welds were made with various welding currents and welding time values, but with a constant pressing force of welding electrodes. The welding current and welding time are the dominant characteristics in spot welding that affect the quality of spot welds, as well as their dimensions and load-bearing capacity. The load-bearing capacity of welded joints was evaluated by tensile test according to STN 05 1122 standard and dimensions and inner defects were evaluated by metallographic analysis by light optical microscope. Thewelding parameters of investigated microalloyed steel sheets were optimized for resistance spot welding on the pneumatic welding machine BPK 20.


2021 ◽  
Vol 161 ◽  
pp. 107475
Author(s):  
Marsel Garifullin ◽  
Kristo Mela ◽  
Thibault Renaux ◽  
David Izabel ◽  
Rainer Holz ◽  
...  

2020 ◽  
Vol 404 ◽  
pp. 3-10
Author(s):  
Sebastian Wiesenmayer ◽  
Marion Merklein

Shear-clinching allows the joining by forming of dissimilar materials with high differences between their mechanical properties without additional fasteners. Since the lower joining partner is indirectly shear cut during the process, even ultra-high strength materials can be joined. However, the cutting of the high-strength materials as well as the extrusion of the upper joining partner leads to high process forces and therefore to high tool loads. This applies in particular for the die, which is highly stressed during the cutting phase and therefore plastically deformed. Within the scope of this work, the influence of the occurring wear on the formation of the joint and its load-bearing capacity is analyzed for a scope of 500 strokes. For this purpose, press hardened 22MnB5 is used as lower joining partner. Its high strength leads to the plastic deformation of the cutting edge, which increases within the first 200 strokes. Afterwards only minor changes occur. Yet, no effect of the occurring wear on the joint formation and the joint strength, which was tested under shear and tensile load, could be determined. Functioning joints could still be produced for more than 500 strokes as the load-bearing capacity remained on a comparable level.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Zhongfei Ye ◽  
Kai Pang ◽  
Yuanxiang Du ◽  
Guifeng Zhao ◽  
Shao Huang ◽  
...  

Herein, a three-dimensional (3D) finite element model of a strain clamp-conductor system is established, with an NY-300/40 compression-type strain clamp taken as an example. The tensile load-carrying capacity of the strain clamp under standard crimping conditions is analyzed with LS-DYNA software, and the simulation results are compared with the experimental results to verify the accuracy of the model. On this basis, the tensile load-bearing capacity and failure mode of the strain clamp-conductor system are analyzed when the crimping length between the steel anchor and steel core is insufficient. Studies have shown that the grip strength of a strain clamp is provided mainly by the crimping between the steel anchor and the steel core. Under standard crimping conditions, the tensile load-bearing capacity of the strain clamp can meet the design requirements. Moreover, because the crimping length between the steel anchor and steel core is sufficient, the strain clamp fails due to aluminum strand breakage rather than the steel core being pulled out of the steel anchor. When the crimping length is insufficient, the grip strength of the strain clamp decreases with decreasing crimping length. Although the absolute value of the grip strength does not decrease significantly, the failure mode gradually changes from the breakage of the aluminum strands to the steel core being pulled out of the steel anchor. For the NY-300/40 compression-type strain clamp, the corresponding critical crimping length (i.e., when the change in failure modes occurs) between the steel core and the steel anchor is 50∼60 mm.


2016 ◽  
Vol 56 (2) ◽  
pp. 112
Author(s):  
Anne Katherine Kawohl ◽  
Jörg Lange

Prior investigations of the load-bearing capacity of bolts during fire have shown differing behaviour between bolts that have been loaded by shear or by tensile loads. A combination of the two loads has not yet been examined under fire conditions. This paper describes a series of tests on high-strength bolts of property class 10.9 both during and after fire under a combined shear and tensile load.


Sign in / Sign up

Export Citation Format

Share Document