scholarly journals Determination of the correlation degree between GNSS stations of Ukraine based on time series

2021 ◽  
Vol 8 (2) ◽  
pp. 21-26
Author(s):  
Iryna Sosonka

Using GNSS for many years is the most common technology for the collection, processing, and interpretation of Earth observation data, in particular for the high-precision study of plate tectonics. The results of GNSS observations, such as coordinate time series, allow us to do continuous monitoring of stations, and modern methods of satellite observation processing provide high-precision results for geodynamic interpretation. The aim of our study is to process the results of observations by DD and PPP methods and determine the degree of correlation between GNSS stations based on coordinate time series. For our study, we selected 10 GNSS stations, which merged into two networks - Lviv (SAMB, STOY, STRY, SULP та ZLRS) and Ukrainian (BCRV, CHTK, CNIV, CRNI, GLSV та SULP). The duration of observations on each of them is about 1.5 years (2019-2020). The downloaded observation files were processed in two software packages: Gamit and GipsyX. After applying the «cleaned» procedures based on the iGPS software package, the residual time series were obtained and the coefficients of the interstation correlation matrices were calculated. After the procedure of "cleaning" the time series, we obtained the RMS value decrease for all components of the coordinates by an average of 7-30%, and some stations by 55%. Based on the obtained RMS values, we can conclude that the influence of unextracted or incorrectly modeled errors can significantly affect the results of satellite observations. The obtained interstation correlation coefficients for both networks show different results depending on the used method for processing satellite observations. The larger correlation values of the DD method can be explained by the fact that the effect of errors is distributed evenly to all network stations, whereas in the PPP method errors for each station are individual. The obtained graphs of the common-mode errors values, after their removal from the residual time series, confirm the more uniform nature of the DD method. The results of our study indicate the feasibility of using the PPP method, as the autonomous processing of stations allows you to see the real geodynamic picture of the studied region.

Author(s):  
Yingying Ren ◽  
Hu Wang ◽  
Lizhen Lian ◽  
Jiexian Wang ◽  
Yingyan Cheng ◽  
...  

2017 ◽  
Vol 65 (6) ◽  
pp. 1111-1118
Author(s):  
Shengtao Feng ◽  
Wanju Bo ◽  
Qingzun Ma ◽  
Zifan Wang

2020 ◽  
Vol 125 (2) ◽  
Author(s):  
Mohammed Habboub ◽  
Panos A. Psimoulis ◽  
Richard Bingley ◽  
Markus Rothacher

2020 ◽  
Author(s):  
David Rivas-Tabares ◽  
Juan J. Martín-Sotoca ◽  
Antonio Saa-Requejo ◽  
Ana María Tarquis

<p>Crop yields of rainfed cereal are highly dependent of the soil-plant-atmosphere system, especially referred to the weather conditions and soil properties. The study of this interaction is feasible through the earth observations of historical data. Remote sensing data and agricultural survey work together identifying and analyzing plots with monocrop cereal sequences. In this research, we investigate the relation of the Normalized Difference Vegetation Index (NDVI) residual time series behavior relative to soil classes from Self-Organizing Maps (SOM) and the precipitation residual time series.</p><p>The midlands of Eresma-Adaja watershed (Dueros’ River basin, Spain) is historically depicted to rainfed cereal agriculture, some evidence of monocropping sequences are worrisome the water availability in the area. Within this area, two contrasting soil properties sites were selected to assess plots with at least 20 years of rainfed monocropping sequences but under similar weather regime. This allows analyzing the effect and relationships of this practice by soil type in time. For this, we treat the NDVI and precipitation time residual series as signals. The use of the Generalized Structure Function applied to these residual time series and the Hurst exponent, serve to confirm the soil properties differences from SOM and to reinforce the scaling properties of soil-climate interaction in semiarid regions for cereals in monocrop. As a result, the NDVI and precipitation series present an antipersistence behavior supporting that precipitation regime is influencing as the same manner the NDVI residual time series among complimentary factors.</p><p><strong>ACKNOWLEDGEMENTS</strong></p><p>Finding for this work was partially provided by Boosting agricultural Insurance based on Earth Observation data - BEACON project under agreement Nº 821964, funded under H2020_EU, DT-SPACE-01-EO-2018-2020. The authors also acknowledge support from Project No. PGC2018-093854-B-I00 of the Spanish <em>Ministerio de Ciencia Innovación y Universidades</em> of Spain. The data provided by ITACyL and AEMET is greatly appreciated.</p><p> </p>


2017 ◽  
Vol 91 (6) ◽  
pp. 653-683 ◽  
Author(s):  
Hadis Samadi Alinia ◽  
Kristy F. Tiampo ◽  
Thomas S. James

Sign in / Sign up

Export Citation Format

Share Document