scholarly journals Sizing and Evaluation of Battery Energy Storage Integrated with Photovoltaic Systems.

Author(s):  
Paulo A. V. Vieira ◽  
Felipe P. G. Silva ◽  
Bruna F. Pinheiro ◽  
Edson C. Bortoni

This paper provides a review of the most common energy storage technologies and analysis of the impact of battery energy storage (BES) in a distribution network with penetration of photovoltaic. In order to reduce the intermittence impacts caused by solar panels (PV), is proposed the use an energy storage elements to stabilize the energy produced, dependent of the irradiation and temperature. Different storage technologies were considered as a function of the costs. A 100 kW PV system with integration of an energy storage was used for the simulated and analysis.

Author(s):  
Bharat Singh ◽  
Satyaveer Singh Rawat

The intermittent behaviour of renewable energy generation has become an essential issue for power deficiency in the distribution network. The high penetration of wind and solar became the primary task for the optimal size of energy storage to support the power mismatch. In the present work, the impact of the energy storage device with distribution generation (DGs) have been determined in a renewable integrated distribution system for power loss minimization. The main contribution of this paper is: (i) optimal location of DGs and battery are obtained by solving single and multi-objective functions. (ii) Determination of DG and battery size for minimization of power loss and system cost. (iii) Impact of battery energy storage device on loss profile and total cost of the system. The impact of day load variation has been considered in the study. The results have been obtained for IEEE-33 bus test system using a hybrid GAMS and particle swarm optimization (PSO) algorithm. The power loss is reduced to 47.60% with single DG and battery energy storage (BES). In addition, the power loss is reduced to 59.285% with two DGs and BES. The simulation results of the test system have been compared with other existing results.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3367 ◽  
Author(s):  
Karl Stein ◽  
Moe Tun ◽  
Keith Musser ◽  
Richard Rocheleau

Battery energy storage systems (BESSs) are being deployed on electrical grids in significant numbers to provide fast-response services. These systems are normally procured by the end user, such as a utility grid owner or independent power producer. This paper introduces a novel research project in which a research institution has purchased a 1 MW BESS and turned ownership over to a utility company under an agreement that allowed the institution to perform experimentation and data collection on the grid for a multi-year period. This arrangement, along with protocols governing experimentation, has created a unique research opportunity to actively and systematically test the impact of a BESS on a live island grid. The 2012 installation and commissioning of the BESS was facilitated by a partnership between the Hawaii Natural Energy Institute (HNEI) and the utility owner, the Hawaiian Electric and Light Company (HELCO). After the test period ended, HELCO continued to allow data collection (including health testing). In 2018, after 8500 equivalent cycles, the BESS continues to operate within specifications. HNEI continues to provide HELCO with expertise to aid with diagnostics as needed. Details about the BESS design, installation, experimental protocols, initial results, and lessons learned are presented in this paper.


2016 ◽  
Vol 78 (10-4) ◽  
Author(s):  
Amirullah Amirullah ◽  
Mochamad Ashari ◽  
Ontoseno Penangsan ◽  
Adi Soeprijanto

Randomly installed distributed generators (DGs) in households may cause unbalanced line current in a distribution network. This research presents a battery energy system for balancing of line current in a distribution network involving multi units of single phase photovoltaic (PV) distributed generators (DGs). In this paper, the PV generators were simulated consisting of a buck-boost DC/DC converter and single phase DC/AC inverter. It was connected to the distribution line through the low voltage 220 volt 50 Hz. The proposed phase balancing system uses battery energy storage and three single phase bidirectional inverters. The inverter is capable of injecting current or absorbing power from the line to the battery. This inverter operation is arranged to balance each distribution line separately, as well as to improve other power quality parameters, such as voltage and current harmonics. Simulation results show that the system was capable of improving the unbalanced line current from 15.59 % to 11, 48 % and unbalanced line voltage from 1.76 % to 0.58 %. The system was able for increasing current harmonics from 0.98 % to 1.03% and voltage harmonics from 38.96% to 39.08%.


Author(s):  
Andoni Saez-de-Ibarra ◽  
Aitor Milo ◽  
Haizea Gaztanaga ◽  
Ion Etxeberria-Otadui ◽  
Pedro Rodriguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document