scholarly journals Extinction and Decay Estimates of Solutions for a $p$-Laplacian Parabolic Equation with Nonlinear Source

2013 ◽  
Vol 20 (5) ◽  
pp. 881-894
Author(s):  
Zhoujin Cui ◽  
Zuodong Yang
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hui Wang ◽  
Caisheng Chen

AbstractIn this paper, we are interested in $L^{\infty }$ L ∞ decay estimates of weak solutions for the doubly nonlinear parabolic equation and the degenerate evolution m-Laplacian equation not in the divergence form. By a modified Moser’s technique we obtain $L^{\infty }$ L ∞ decay estimates of weak solutiona.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Dengming Liu ◽  
Luo Yang

By energy estimate approach and the method of upper and lower solutions, we give the conditions on the occurrence of the extinction and nonextinction behaviors of the solutions for a quasilinear parabolic equation with nonlinear source. Moreover, the decay estimates of the solutions are studied.


2021 ◽  
Vol 54 (1) ◽  
pp. 245-258
Author(s):  
Younes Bidi ◽  
Abderrahmane Beniani ◽  
Khaled Zennir ◽  
Ahmed Himadan

Abstract We consider strong damped wave equation involving the fractional Laplacian with nonlinear source. The results of global solution under necessary conditions on the critical exponent are established. The existence is proved by using the Galerkin approximations combined with the potential well theory. Moreover, we showed new decay estimates of global solution.


1993 ◽  
Vol 4 (3) ◽  
pp. 303-319 ◽  
Author(s):  
Bopeng Rao

We consider a hybrid system consisting of a cable linked at its end to a rigid body. It is proved that such a hybrid system can be asymptotically stabilized by means of dissipative boundary feedbacks. Uniform decay estimates of energy are also established.


2010 ◽  
Vol 07 (03) ◽  
pp. 471-501 ◽  
Author(s):  
YOUSUKE SUGITANI ◽  
SHUICHI KAWASHIMA

We study the initial value problem for a semi-linear dissipative plate equation in n-dimensional space. We observe that the dissipative structure of the linearized equation is of the regularity-loss type. This means that we have the optimal decay estimates of solutions under the additional regularity assumption on the initial data. This regularity-loss property causes the difficulty in solving the nonlinear problem. For our semi-linear problem, this difficulty can be overcome by introducing a set of time-weighted Sobolev spaces, where the time-weights and the regularity of the Sobolev spaces are determined by our regularity-loss property. Consequently, under smallness condition on the initial data, we prove the global existence and optimal decay of the solution in the corresponding Sobolev spaces.


Sign in / Sign up

Export Citation Format

Share Document