scholarly journals A Novel Pilot Spoofing Scheme via Intelligent Reflecting Surface Based On Statistical CSI

Author(s):  
jie yang ◽  
Xinsheng Ji ◽  
Feihu Wang ◽  
Kaizhi Huang ◽  
You Zhou

Pilot spoofing attack brings challenges to the physical layer secure transmission. However, since the inherent characteristics of wireless environment have not changed, active eavesdropping can be detected based on prior information. Intelligent reflecting surface (IRS), with the real-time programmable characteristics for wireless environment, provides new possibilities for effective pilot spoofing. In this paper, the IRS is deployed near the legitimate users and the control strategy is embeded into the legitimate communication process under time-division duplex (TDD) mode to assist eavesdroppers to implement pilot spoofing. By designing different phase shifts at the IRS during the uplink phase and downlink phase, the channel reciprocity between uplink and downlink disappears, and thus secure beamforming vector is biased towards the eavesdropper. Furthermore, in order to obtain more information, the average secrecy rate minimization based on statistical channel state information is established by carefully designing the phase shifts. The formulated problem is non-trivial to solve. By using alternating optimization and Charnes-Cooper transformation technique, the original problem is transformed into convex form and a sub-optimal solution is achieved. Finally, simulation results show that our proposed scheme poses serious secure threat without any energy footprint especially for TDD systems.

2021 ◽  
Author(s):  
jie yang ◽  
Xinsheng Ji ◽  
Feihu Wang ◽  
Kaizhi Huang ◽  
You Zhou

Pilot spoofing attack brings new challenges to the physical layer secure transmission. However, since the inherent characteristics of wireless environment have not changed, active eavesdropping can be detected based on prior information. Intelligent reflecting surface (IRS), with the real-time programmable features for wireless channels, provides new possibilities for effective pilot spoofing. In this paper, the IRS is deployed near the legitimate users and the control strategy is embeded into the legitimate communication process under time-division duplex mode to assist eavesdroppers to conduct pilot spoofing. By setting different phase shifts at the IRS during the uplink phase and downlink phase, the channel reciprocity disappears, and thus secure beamforming vector is biased towards the eavesdropper. Furthermore, in order to overhear more information, the average secrecy rate minimization problem based on statistical channel state information is established by carefully designing the phase shifts, which is non-trivial to solve. With alternating optimization and Charnes-Cooper transformation technique, the original problem is transformed into convex form and a near optimal solution is achieved. Finally, simulation results show that our proposed scheme can pose serious secure threat without any energy footprint. What's more, if the IRS is not utilized by the internal users properly, it will bring more threat.


2020 ◽  
Author(s):  
jie yang ◽  
Xinsheng Ji ◽  
Kaizhi Huang ◽  
Xiaoli Sun ◽  
Xiaoming Xu

Pilot spoofing attack brings challenges to the physical layer secure transmission. However, since the inherent characteristics of wireless environment have not changed, active eavesdropping can be detected based on prior information. Intelligent reflecting surface (IRS), with the real-time programmable characteristics for wireless environment, provides new possibilities for effective pilot spoofing. In this paper, the IRS is deployed near the legitimate users and the control strategy is embeded into the legitimate communication process under time-division duplex (TDD) mode to assist eavesdroppers to implement pilot spoofing. By designing different phase shifts at the IRS during the uplink phase and downlink phase, the channel reciprocity between uplink and downlink disappears, and thus the secure beamforming vector is biased towards the eavesdropper. Furthermore, in order to obtain more information, the average secrecy rate based on the statistical channel state information is established by carefully designing the phase shifts. The formulated problem is non-trivial to solve. By using alternating optimization and Charnes-Cooper transformation technique, the original problem is transformed into convex form and a sub-optimal solution is achieved. Finally, simulation results show that our proposed scheme poses serious secure threat for TDD systems.


2021 ◽  
Author(s):  
jie yang ◽  
Xinsheng Ji ◽  
Feihu Wang ◽  
Kaizhi Huang ◽  
Lin Guo

<div>Pilot spoofing attack brings new challenges to physical layer secure transmission. However, this method will not work without any knowledge about the pilot sequence and active eavesdropping can be detected by constructing random pilot sequence. Intelligent reflecting surface (IRS), with the real-time programmable features for wireless channels, provides new possibilities for effective pilot spoofing. In this paper, the IRS is deployed near the legitimate users and the legitimate signal can always be passively reflected. Then the control strategy is embedded into the communication process under time-division duplex mode to assist eavesdroppers to conduct pilot spoofing.</div><div> By setting different phase shifts at the IRS during the uplink phase and downlink phase, the channel reciprocity disappears, and thus secure beamforming vector is biased towards the eavesdropper. Furthermore, in order to overhear more information, the average secrecy rate minimization problem based on statistical channel state information is established by carefully designing the phase shifts, which is non-trivial to solve. With alternating optimization and Charnes-Cooper transformation technique, the original problem is transformed into convex form and a near optimal solution is achieved. Finally, simulation results show that our proposed scheme can pose serious secure threat without any energy footprint. What's more, if the IRS is not utilized by the internal users properly, it will bring more threat. </div>


2020 ◽  
Author(s):  
jie yang ◽  
Xinsheng Ji ◽  
Kaizhi Huang ◽  
Xiaoli Sun ◽  
Xiaoming Xu

Pilot spoofing attack brings challenges to the physical layer secure transmission. However, since the inherent characteristics of wireless environment have not changed, active eavesdropping can be detected based on prior information. Intelligent reflecting surface (IRS), with the real-time programmable characteristics for wireless environment, provides new possibilities for effective pilot spoofing. In this paper, the IRS is deployed near the legitimate users and the control strategy is embeded into the legitimate communication process under time-division duplex (TDD) mode to assist eavesdroppers to implement pilot spoofing. By designing different phase shifts at the IRS during the uplink phase and downlink phase, the channel reciprocity between uplink and downlink disappears, and thus the secure beamforming vector is biased towards the eavesdropper. Furthermore, in order to obtain more information, the average secrecy rate based on the statistical channel state information is established by carefully designing the phase shifts. The formulated problem is non-trivial to solve. By using alternating optimization and Charnes-Cooper transformation technique, the original problem is transformed into convex form and a sub-optimal solution is achieved. Finally, simulation results show that our proposed scheme poses serious secure threat for TDD systems.


Author(s):  
Tung T. Vu ◽  
Ha Hoang Kha

In this research work, we investigate precoder designs to maximize the energy efficiency (EE) of secure multiple-input multiple-output (MIMO) systems in the presence of an eavesdropper. In general, the secure energy efficiency maximization (SEEM) problem is highly nonlinear and nonconvex and hard to be solved directly. To overcome this difficulty, we employ a branch-and-reduce-and-bound (BRB) approach to obtain the globally optimal solution. Since it is observed that the BRB algorithm suffers from highly computational cost, its globally optimal solution is importantly served as a benchmark for the performance evaluation of the suboptimal algorithms. Additionally, we also develop a low-complexity approach using the well-known zero-forcing (ZF) technique to cancel the wiretapped signal, making the design problem more amenable. Using the ZF based method, we transform the SEEM problem to a concave-convex fractional one which can be solved by applying the combination of the Dinkelbach and bisection search algorithm. Simulation results show that the ZF-based method can converge fast and obtain a sub-optimal EE performance which is closed to the optimal EE performance of the BRB method. The ZF based scheme also shows its advantages in terms of the energy efficiency in comparison with the conventional secrecy rate maximization precoder design.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1439
Author(s):  
Janghyuk Youn ◽  
Woong Son ◽  
Bang Chul Jung

Recently, reconfigurable intelligent surfaces (RISs) have received much interest from both academia and industry due to their flexibility and cost-effectiveness in adjusting the phase and amplitude of wireless signals with low-cost passive reflecting elements. In particular, many RIS-aided techniques have been proposed to improve both data rate and energy efficiency for 6G wireless communication systems. In this paper, we propose a novel RIS-based channel randomization (RCR) technique for improving physical-layer security (PLS) for a time-division duplex (TDD) downlink cellular wire-tap network which consists of a single base station (BS) with multiple antennas, multiple legitimate pieces of user equipment (UE), multiple eavesdroppers (EVEs), and multiple RISs. We assume that only a line-of-sight (LOS) channel exists among the BS, the RISs, and the UE due to propagation characteristics of tera-hertz (THz) spectrum bands that may be used in 6G wireless communication systems. In the proposed technique, each RIS first pseudo-randomly generates multiple reflection matrices and utilizes them for both pilot signal duration (PSD) in uplink and data transmission duration (DTD) in downlink. Then, the BS estimates wireless channels of UE with reflection matrices of all RISs and selects the UE that has the best secrecy rate for each reflection matrix generated. It is shown herein that the proposed technique outperforms the conventional techniques in terms of achievable secrecy rates.


2021 ◽  
Author(s):  
Shu Xu ◽  
Chen Liu ◽  
Hong Wang ◽  
Mujun Qian ◽  
Wenfeng Sun

Abstract Secure transmission is essential for future non-orthogonal multiple access (NOMA) system. This paper investigates relay-antenna selection (RAS) to enhance physical-layer security (PLS) of cooperative NOMA system in the presence of an eavesdropper, where multiple antennas are deployed at the relays, the users, and the eavesdropper. In order to reduce expense on radio frequency (RF) chains, selection combining (SC) is employed at both the relays and the users, whilst the eavesdropper employs either maximal-ratio combining (MRC) or selection combining (SC) to process the received signals. Under the condition that the channel state information (CSI) of the eavesdropping channel is available or unavailable, two e↵ective relay-antenna selection schemes are proposed. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed relay-antenna selection schemes. In order to gain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. In simulations, it is demonstrated that the theoretical results match well with the simulation results and the SOP of the proposed schemes is less than that of the conventional orthogonal multiple access (OMA) scheme obviously.


Sign in / Sign up

Export Citation Format

Share Document