scholarly journals Particle Size Estimation in Mixed Commercial Waste Images Using Deep Learning

Author(s):  
Phongsathorn Kittiworapanya ◽  
Kitsuchart Pasupa ◽  
Peter Auer

<div>We assessed several state-of-the-art deep learning algorithms and computer vision techniques for estimating the particle size of mixed commercial waste from images. In waste management, the first step is often coarse shredding, using the particle size to set up the shredder machine. The difficulty is separating the waste particles in an image, which can not be performed well. This work focused on estimating size by using the texture from the input image, captured at a fixed height from the camera lens to the ground. We found that EfficientNet achieved the best performance of 0.72 on F1-Score and 75.89% on accuracy.<br></div>

2021 ◽  
Author(s):  
Phongsathorn Kittiworapanya ◽  
Kitsuchart Pasupa ◽  
Peter Auer

<div>This work was presented at the 10th Joint Symposium on Computational Intelligence (JSCI10), organized by the IEEE-CIS Thailand Chapter, that aims to support research students and young researchers, to create a place enabling participants to share and discuss on their research prior to publishing their works. The event was open to all researchers who want to broaden their knowledge in the field of computational intelligence.<br></div><div><br></div><div>We assessed several state-of-the-art deep learning algorithms and computer vision techniques for estimating the particle size of mixed commercial waste from images. In waste management, the first step is often coarse shredding, using the particle size to set up the shredder machine. The difficulty is separating the waste particles in an image, which can not be performed well. This work focused on estimating size by using the texture from the input image, captured at a fixed height from the camera lens to the ground. We found that EfficientNet achieved the best performance of 0.72 on F1-Score and 75.89% on accuracy.<br></div>


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 73
Author(s):  
Marjan Stoimchev ◽  
Marija Ivanovska ◽  
Vitomir Štruc

In the past few years, there has been a leap from traditional palmprint recognition methodologies, which use handcrafted features, to deep-learning approaches that are able to automatically learn feature representations from the input data. However, the information that is extracted from such deep-learning models typically corresponds to the global image appearance, where only the most discriminative cues from the input image are considered. This characteristic is especially problematic when data is acquired in unconstrained settings, as in the case of contactless palmprint recognition systems, where visual artifacts caused by elastic deformations of the palmar surface are typically present in spatially local parts of the captured images. In this study we address the problem of elastic deformations by introducing a new approach to contactless palmprint recognition based on a novel CNN model, designed as a two-path architecture, where one path processes the input in a holistic manner, while the second path extracts local information from smaller image patches sampled from the input image. As elastic deformations can be assumed to most significantly affect the global appearance, while having a lesser impact on spatially local image areas, the local processing path addresses the issues related to elastic deformations thereby supplementing the information from the global processing path. The model is trained with a learning objective that combines the Additive Angular Margin (ArcFace) Loss and the well-known center loss. By using the proposed model design, the discriminative power of the learned image representation is significantly enhanced compared to standard holistic models, which, as we show in the experimental section, leads to state-of-the-art performance for contactless palmprint recognition. Our approach is tested on two publicly available contactless palmprint datasets—namely, IITD and CASIA—and is demonstrated to perform favorably against state-of-the-art methods from the literature. The source code for the proposed model is made publicly available.


2021 ◽  
Author(s):  
Weihao Zhuang ◽  
Tristan Hascoet ◽  
Xunquan Chen ◽  
Ryoichi Takashima ◽  
Tetsuya Takiguchi ◽  
...  

Abstract Currently, deep learning plays an indispensable role in many fields, including computer vision, natural language processing, and speech recognition. Convolutional Neural Networks (CNNs) have demonstrated excellent performance in computer vision tasks thanks to their powerful feature extraction capability. However, as the larger models have shown higher accuracy, recent developments have led to state-of-the-art CNN models with increasing resource consumption. This paper investigates a conceptual approach to reduce the memory consumption of CNN inference. Our method consists of processing the input image in a sequence of carefully designed tiles within the lower subnetwork of the CNN, so as to minimize its peak memory consumption, while keeping the end-to-end computation unchanged. This method introduces a trade-off between memory consumption and computations, which is particularly suitable for high-resolution inputs. Our experimental results show that MobileNetV2 memory consumption can be reduced by up to 5.3 times with our proposed method. For ResNet50, one of the most commonly used CNN models in computer vision tasks, memory can be optimized by up to 2.3 times.


Author(s):  
So-Hyun Park ◽  
Sun-Young Ihm ◽  
Aziz Nasridinov ◽  
Young-Ho Park

This study proposes a method to reduce the playing-related musculoskeletal disorders (PRMDs) that often occur among pianists. Specifically, we propose a feasibility test that evaluates several state-of-the-art deep learning algorithms to prevent injuries of pianist. For this, we propose (1) a C3P dataset including various piano playing postures and show (2) the application of four learning algorithms, which demonstrated their superiority in video classification, to the proposed C3P datasets. To our knowledge, this is the first study that attempted to apply the deep learning paradigm to reduce the PRMDs in pianist. The experimental results demonstrated that the classification accuracy is 80% on average, indicating that the proposed hypothesis about the effectiveness of the deep learning algorithms to prevent injuries of pianist is true.


2021 ◽  
Vol 253 ◽  
pp. 104700
Author(s):  
Dario Augusto Borges Oliveira ◽  
Luiz Gustavo Ribeiro Pereira ◽  
Tiago Bresolin ◽  
Rafael Ehrich Pontes Ferreira ◽  
Joao Ricardo Reboucas Dorea

2008 ◽  
Vol 1107 ◽  
Author(s):  
Graham A. Fairhall

In the autumn of 2006, the UK government declared its expectation to set up a National Nuclear Laboratory (NNL) as soon as possible (subject to satisfactory contractual terms). The aim would be to base the Laboratory around Nexia Solutions and its ‘state of the art’ facility at Sellafield in Cumbria. The initial phase of the work to recommend formation of the laboratory is well advanced, and the NNL is expected to have a remit for the following roles:— to play a key role in supporting the UK's strategic R&D requirements— to operate world-class facilities— to ensure key skills are safeguarded and enhanced— to play a key role in the development of the UK's R&D supply base.


Author(s):  
Ben Bright Benuwa ◽  
Yong Zhao Zhan ◽  
Benjamin Ghansah ◽  
Dickson Keddy Wornyo ◽  
Frank Banaseka Kataka

The rapid increase of information and accessibility in recent years has activated a paradigm shift in algorithm design for artificial intelligence. Recently, deep learning (a surrogate of Machine Learning) have won several contests in pattern recognition and machine learning. This review comprehensively summarises relevant studies, much of it from prior state-of-the-art techniques. This paper also discusses the motivations and principles regarding learning algorithms for deep architectures.


2021 ◽  
Vol 7 (2) ◽  
pp. 22
Author(s):  
Erena Siyoum Biratu ◽  
Friedhelm Schwenker ◽  
Taye Girma Debelee ◽  
Samuel Rahimeto Kebede ◽  
Worku Gachena Negera ◽  
...  

A brain tumor is one of the foremost reasons for the rise in mortality among children and adults. A brain tumor is a mass of tissue that propagates out of control of the normal forces that regulate growth inside the brain. A brain tumor appears when one type of cell changes from its normal characteristics and grows and multiplies abnormally. The unusual growth of cells within the brain or inside the skull, which can be cancerous or non-cancerous has been the reason for the death of adults in developed countries and children in under developing countries like Ethiopia. The studies have shown that the region growing algorithm initializes the seed point either manually or semi-manually which as a result affects the segmentation result. However, in this paper, we proposed an enhanced region-growing algorithm for the automatic seed point initialization. The proposed approach’s performance was compared with the state-of-the-art deep learning algorithms using the common dataset, BRATS2015. In the proposed approach, we applied a thresholding technique to strip the skull from each input brain image. After the skull is stripped the brain image is divided into 8 blocks. Then, for each block, we computed the mean intensities and from which the five blocks with maximum mean intensities were selected out of the eight blocks. Next, the five maximum mean intensities were used as a seed point for the region growing algorithm separately and obtained five different regions of interest (ROIs) for each skull stripped input brain image. The five ROIs generated using the proposed approach were evaluated using dice similarity score (DSS), intersection over union (IoU), and accuracy (Acc) against the ground truth (GT), and the best region of interest is selected as a final ROI. Finally, the final ROI was compared with different state-of-the-art deep learning algorithms and region-based segmentation algorithms in terms of DSS. Our proposed approach was validated in three different experimental setups. In the first experimental setup where 15 randomly selected brain images were used for testing and achieved a DSS value of 0.89. In the second and third experimental setups, the proposed approach scored a DSS value of 0.90 and 0.80 for 12 randomly selected and 800 brain images respectively. The average DSS value for the three experimental setups was 0.86.


2020 ◽  
Vol 12 (1) ◽  
pp. 90-108
Author(s):  
Mahmoud Kalash ◽  
Mrigank Rochan ◽  
Noman Mohammed ◽  
Neil Bruce ◽  
Yang Wang ◽  
...  

In this article, the authors propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses serious security threats to financial institutions, businesses, and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples. Nowadays, machine learning approaches are becoming popular for malware classification. However, most of these approaches are based on shallow learning algorithms (e.g. SVM). Recently, convolutional neural networks (CNNs), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Inspired by this, the authors propose a CNN-based architecture to classify malware samples. They convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, namely Malimg and Microsoft, demonstrate that their method outperforms competing state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document