scholarly journals A Photogenerated Silicon Plasma Waveguide Switch and Variable Attenuator for Millimeter-Wave Applications

Author(s):  
Thomas Jones ◽  
Alden Fisher ◽  
Douglas W. Barlage ◽  
Dimitrios Peroulis

This paper reports the design, fabrication, and measurement of a millimeter-wave solid-state ?pi-match waveguide switch using bulk silicon micromachining. A photogenerated plasma within a silicon post is utilized as the switching element within the waveguide channel. Not only does this isolate the switch bias network from the RF signal path, but allows for tuning of the OFF-state isolation with increasing optical power for application as a variable attenuator. A measured OFF-state isolation greater than 25 dB up to 40 GHz is reported, with a measured extracted ON-state insertion loss of 0.52 dB at 35 GHz, and less than 0.88 dB across the entire band from 30-40 GHz. The proposed switch illustrates the significant potential for photogenerated silicon plasma switching of high-performance bulk micromachined millimeter-wave waveguides.

2021 ◽  
Author(s):  
Thomas Jones ◽  
Alden Fisher ◽  
Douglas W. Barlage ◽  
Dimitrios Peroulis

This paper reports the design, fabrication, and measurement of a millimeter-wave solid-state ?pi-match waveguide switch using bulk silicon micromachining. A photogenerated plasma within a silicon post is utilized as the switching element within the waveguide channel. Not only does this isolate the switch bias network from the RF signal path, but allows for tuning of the OFF-state isolation with increasing optical power for application as a variable attenuator. A measured OFF-state isolation greater than 25 dB up to 40 GHz is reported, with a measured extracted ON-state insertion loss of 0.52 dB at 35 GHz, and less than 0.88 dB across the entire band from 30-40 GHz. The proposed switch illustrates the significant potential for photogenerated silicon plasma switching of high-performance bulk micromachined millimeter-wave waveguides.


1974 ◽  
Vol 13 (12) ◽  
pp. 2075-2076
Author(s):  
Tetsuo Obunai ◽  
Tadashi Sekiguchi

2011 ◽  
Vol 131 (4) ◽  
pp. 302-303
Author(s):  
Hitoshi Iida ◽  
Takayuki Inaba ◽  
Yozo Shimada ◽  
Koji Komiyama

2002 ◽  
Vol 58 (11-12) ◽  
pp. 6
Author(s):  
A. V. Arkhipov ◽  
O. I. Bilous ◽  
A. P. Koretskiy ◽  
Anatoly Ivanovich Fisun

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 169
Author(s):  
Mengcheng Wang ◽  
Shenglin Ma ◽  
Yufeng Jin ◽  
Wei Wang ◽  
Jing Chen ◽  
...  

Through Silicon Via (TSV) technology is capable meeting effective, compact, high density, high integration, and high-performance requirements. In high-frequency applications, with the rapid development of 5G and millimeter-wave radar, the TSV interposer will become a competitive choice for radio frequency system-in-package (RF SIP) substrates. This paper presents a redundant TSV interconnect design for high resistivity Si interposers for millimeter-wave applications. To verify its feasibility, a set of test structures capable of working at millimeter waves are designed, which are composed of three pieces of CPW (coplanar waveguide) lines connected by single TSV, dual redundant TSV, and quad redundant TSV interconnects. First, HFSS software is used for modeling and simulation, then, a modified equivalent circuit model is established to analysis the effect of the redundant TSVs on the high-frequency transmission performance to solidify the HFSS based simulation. At the same time, a failure simulation was carried out and results prove that redundant TSV can still work normally at 44 GHz frequency when failure occurs. Using the developed TSV process, the sample is then fabricated and tested. Using L-2L de-embedding method to extract S-parameters of the TSV interconnection. The insertion loss of dual and quad redundant TSVs are 0.19 dB and 0.46 dB at 40 GHz, respectively.


Sign in / Sign up

Export Citation Format

Share Document