scholarly journals LiDAR Integrated High-Capacity IR OWC System with Abilities of Localization and Link Alignment

Author(s):  
Zhi Li

By using narrow infrared (IR) beams, optical wireless communication (OWC) system can realize ultra-high capacity and high-privacy transmission. However, due to the point-to-point connection approach, a high-accuracy localization system and beam-steering antenna (BSA) are required to steer the signal beam to user terminals. In addition, to achieve link alignment in the receiver, the BSA needs to be within the limited receiver field of view (FoV). This problem greatly limits the practical application of high-capacity IR optical wireless communication and has not been well solved yet. In this paper, we proposed an indoor beam-steering IR OWC system with high-accuracy and calibration-free localization ability by employing a coaxial frequency modulated continuous wave (FMCW) light detection and ranging (LiDAR) system. In the meantime, benefit from the mm-level ranging accuracy of the LiDAR system, a feasible approach to deal with the link alignment issue for practical applications is firstly demonstrated. With the assistance of the LiDAR system, we experimentally achieved the localization of user terminals with a 0.038-degree localization accuracy, link alignment at the receiver and an error-free on-off keying (OOK) downlink transmission of 20 Gb/s in free space at 3-m distance is demonstrated.

2021 ◽  
Author(s):  
Zhi Li

By using narrow infrared (IR) beams, optical wireless communication (OWC) system can realize ultra-high capacity and high-privacy transmission. However, due to the point-to-point connection approach, a high-accuracy localization system and beam-steering antenna (BSA) are required to steer the signal beam to user terminals. In addition, to achieve link alignment in the receiver, the BSA needs to be within the limited receiver field of view (FoV). This problem greatly limits the practical application of high-capacity IR optical wireless communication and has not been well solved yet. In this paper, we proposed an indoor beam-steering IR OWC system with high-accuracy and calibration-free localization ability by employing a coaxial frequency modulated continuous wave (FMCW) light detection and ranging (LiDAR) system. In the meantime, benefit from the mm-level ranging accuracy of the LiDAR system, a feasible approach to deal with the link alignment issue for practical applications is firstly demonstrated. With the assistance of the LiDAR system, we experimentally achieved the localization of user terminals with a 0.038-degree localization accuracy, link alignment at the receiver and an error-free on-off keying (OOK) downlink transmission of 20 Gb/s in free space at 3-m distance is demonstrated.


2018 ◽  
Vol 36 (19) ◽  
pp. 4486-4493 ◽  
Author(s):  
Ton Koonen ◽  
Fausto Gomez-Agis ◽  
Frans Huijskens ◽  
Ketemaw Addis Mekonnen ◽  
Zizheng Cao ◽  
...  

2020 ◽  
Vol 38 (10) ◽  
pp. 2842-2848 ◽  
Author(s):  
Ton Koonen ◽  
Ketemaw Addis Mekonnen ◽  
Frans Huijskens ◽  
Ngoc-Quan Pham ◽  
Zizheng Cao ◽  
...  

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Ahmed Nabih Zaki Rashed ◽  
Abd Elnaser A. Mohammed ◽  
Ehab Salah El-Din ◽  
P. Yupapin

AbstractThis study has presented spatial continuous wave laser and spatiotemporal vertical cavity surface emitting laser (VCSEL) for high speed long haul optical wireless communication channels. Possible data rates range from 40 Gb/s to 250 Gb/s over propagation distance ranges from 500 km to 2500 km. The optical wireless communication (OWC) system performance is tested through the measurement of maximum Q-factor, minimum bit error rate (BER) and signal to noise ratio (SNR). It is observed that spatiotemporal VCSEL has presented better performance than CW laser in the OWC system, especially for long haul transmission applications. It is observed that SNR improvement ratio ranges from 8.15 % to 19 % by using spatiotemporal VCSEL than CW laser for bit rate of 40 Gb/s over propagation distance ranges from 500 km to 2500 km. Max. Q-factor improvement ratio ranges from 4.62 % to 13.71 % by using spatiotemporal VCSEL than CW laser for data rate of 40 Gb/s over propagation distance ranges from 500 km to 2500 km. So it is clear that spatiotemporal VCSEL is more suitable for long haul OWC applications than other optical sources.


2013 ◽  
Vol 25 (15) ◽  
pp. 1428-1431 ◽  
Author(s):  
Paul Brandl ◽  
Stefan Schidl ◽  
Andreas Polzer ◽  
Wolfgang Gaberl ◽  
Horst Zimmermann

Sign in / Sign up

Export Citation Format

Share Document