scholarly journals Examination of Vibration Energy Harvesting in an Automobile

Author(s):  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
Vijeet Singh

As observed in day-to-day life, driving on a bumpy road generates vibrational energy in an automobile which is then dissipated by the shock absorbers. But lately, as we progress into the energy-depleting, energy concern awake era, energy efficiency has been a serious concern within the automobile manufacturing industry since the production within the 1900s, researchers realized that the energy dissipated in traditional hydraulic shock absorbers is merit being recovered only within the middle of 1990s. Unlike traditional suspension systems which suppress the vibrations by dissipating the vibration energy into waste heat, the regenerative suspension with energy harvesting shock absorbers can convert the traditionally wasted energy into electricity. Several different techniques followed for the energy harvesting are listed and Two main devices namely rotary and linear electromagnetic generators are analyzed for comfort and handling, body acceleration with and without a generator, and also attempts is made to enunciate the importance of energy conservation techniques in an automobile.

2021 ◽  
Author(s):  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
Vijeet Singh

As observed in day-to-day life, driving on a bumpy road generates vibrational energy in an automobile which is then dissipated by the shock absorbers. But lately, as we progress into the energy-depleting, energy concern awake era, energy efficiency has been a serious concern within the automobile manufacturing industry since the production within the 1900s, researchers realized that the energy dissipated in traditional hydraulic shock absorbers is merit being recovered only within the middle of 1990s. Unlike traditional suspension systems which suppress the vibrations by dissipating the vibration energy into waste heat, the regenerative suspension with energy harvesting shock absorbers can convert the traditionally wasted energy into electricity. Several different techniques followed for the energy harvesting are listed and Two main devices namely rotary and linear electromagnetic generators are analyzed for comfort and handling, body acceleration with and without a generator, and also attempts is made to enunciate the importance of energy conservation techniques in an automobile.


Author(s):  
Jia Mi ◽  
Lin Xu ◽  
Sijing Guo ◽  
Lingshuai Meng ◽  
Mohamed A. A. Abdelkareem

With the development of high-speed rail technology, the interaction between wheel and track becomes more serious, which threatens the running stability, riding quality and safety of the vehicle. Due to the selected stiffness and damping parameters, conventional passive suspensions cannot fit in with the diverse conditions of the railway. Additionally, among these vibrations contains a large amount of energy, if this vibrational energy can be recycled and used for the active suspension to control, it will be a good solution compared to the conventional passive suspensions. Many energy-harvesting shock absorbers have been proposed in recent years, the most popular design is the electromagnetic harvester including linear electromagnetic shock absorbers, rotational electromagnetic shock absorbers, the mechanical motion rectifier (MMR), and the hydraulic electromagnetic energy-regenerative shock absorber (HESA). With different energy converting mechanisms, the complicated effects of the inertia and nonlinear damping behaviors will severely impact the vehicle dynamic performance such as the ride comfort and road handling. In the past few years, engineers and researchers have done relevant researches on HESA which have shown that it has good effects and proposed several suspension energy regeneration solutions for applying to car. This paper presents a novel application of HESA into a bogie system for railway vehicles comparing to the conventional suspension systems. HESA is composed of hydraulic cylinder, check valves, accumulators, hydraulic motor, generator, pipelines and so on. In HESA, the high-pressure oil which is produced by shock absorber reciprocation could be exported to drive the hydraulic motor, so as to drive the generator to generate electricity. In this way, HESA regenerate the mechanical vibrational energy that is otherwise dissipated by the traditional shock absorber as heat energy. Because the bogie has two sets of suspension systems, a dynamic model of bogie based on AMESim is established in order to clarify the influence of the dynamic characteristics effect and the energy harvesting efficiency when installing the HESA into different sets of the bogie. Then, set the HESA model into each suspension system of the bogie and input with the corresponding characteristic excitation, the influence of the dynamic characteristics and the energy harvesting efficiency are analyzed and compared. The simulation results show that the system can effectively reduce the vibration of the carriage, while maintaining good potential to recycle vibratory energy. Based on the results of the simulation, the relationships as well as differences between the first suspension system and second suspension system have been concluded, which are useful for the design of HESA-Bogie. Moreover, comparing the energy harvesting efficiency discrepancy between the two suspension systems, the potential of energy harvesting of a novel railway vehicle bogie system with HESA has been evaluated and then the best application department has been found, which indicates the theoretical feasibilities of the HESA-bogie to improve the fuel economy.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2012 ◽  
Vol 476-478 ◽  
pp. 1336-1340
Author(s):  
Kai Feng Li ◽  
Rong Liu ◽  
Lin Xiang Wang

The concept of energy harvesting works towards developing self-powered devices that do not require replaceable power supplies. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with ferroelectric materials. Ferroelectric materials have a crystalline structure that provide a unique ability to convert an applied electrical potential into a mechanical strain or vice versa. Based on the properties of the material, this paper investigates the technique of power harvesting and storage.


Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

The current article deals with finite element (FE)- and genetic algorithm (GA)-based vibration energy harvesting from a tapered piezolaminated cantilever beam. Euler–Bernoulli beam theory is used for modeling the various cross sections of the beam. The governing equation of motion is derived by using the Hamilton's principle. Two noded beam elements with two degrees of freedom at each node have been considered in order to solve the governing equation. The effect of structural damping has also been incorporated in the FE model. An electric interface is assumed to be connected to measure the voltage and output power in piezoelectric patch due to charge accumulation caused by vibration. The effects of taper (both in the width and height directions) on output power for three cases of shape variation (such as linear, parabolic and cubic) along with frequency and voltage are analyzed. A real-coded genetic algorithm-based constrained (such as ultimate stress and breakdown voltage) optimization technique has been formulated to determine the best possible design variables for optimal harvesting power. A comparative study is also carried out for output power by varying the cross section of the beam, and genetic algorithm-based optimization scheme shows the better results than that of available conventional trial and error methods.


Sign in / Sign up

Export Citation Format

Share Document