scholarly journals Reduced Annotation Based on Deep Active Learning for Arabic Text Detection in Natural Scene Images

Author(s):  
Khalil Boukthir ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
habib dhahri ◽  
Adel Alimi

<div>- A novel approach is presented to reduced annotation based on Deep Active Learning for Arabic text detection in Natural Scene Images.</div><div>- A new Arabic text images dataset (7k images) using the Google Street View service named TSVD.</div><div>- A new semi-automatic method for generating natural scene text images from the streets.</div><div>- Training samples is reduced to 1/5 of the original training size on average.</div><div>- Much less training data to achieve better dice index : 0.84</div>

2021 ◽  
Author(s):  
Khalil Boukthir ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
habib dhahri ◽  
Adel Alimi

<div>- A novel approach is presented to reduced annotation based on Deep Active Learning for Arabic text detection in Natural Scene Images.</div><div>- A new Arabic text images dataset (7k images) using the Google Street View service named TSVD.</div><div>- A new semi-automatic method for generating natural scene text images from the streets.</div><div>- Training samples is reduced to 1/5 of the original training size on average.</div><div>- Much less training data to achieve better dice index : 0.84</div>


Author(s):  
Dibyajyoti Dhar ◽  
Neelotpal Chakraborty ◽  
Sayan Choudhury ◽  
Ashis Paul ◽  
Ayatullah Faruk Mollah ◽  
...  

Text detection in natural scene images is an interesting problem in the field of information retrieval. Several methods have been proposed over the past few decades for scene text detection. However, the robustness and efficiency of these methods are downgraded due to high sensitivity towards various complexities of an image. Also, in multi-lingual environment where texts may occur in multiple languages, a method may not be suitable for detecting scene texts in certain languages. To counter these challenges, a gradient morphology-based method is proposed in this paper that proves to be robust against image complexities and efficiently detects scene texts irrespective of their languages. The method is validated using low quality images from standard multi-lingual datasets like MSRA-TD500 and MLe2e. The performance of the method is compared with that of some state-of-the-art methods, and comparably better results are observed.


Author(s):  
Houda Gaddour ◽  
Slim Kanoun ◽  
Nicole Vincent

Text in scene images can provide useful and vital information for content-based image analysis. Therefore, text detection and script identification in images are an important task. In this paper, we propose a new method for text detection in natural scene images, particularly for Arabic text, based on a bottom-up approach where four principal steps can be highlighted. The detection of extremely stable and homogeneous regions of interest (ROIs) is based on the Color Stability and Homogeneity Regions (CSHR) proposed technique. These regions are then labeled as textual or non-textual ROI. This identification is based on a structural approach. The textual ROIs are grouped to constitute zones according to spatial relations between them. Finally, the textual or non-textual nature of the constituted zones is refined. This last identification is based on handcrafted features and on features built from a Convolutional Neural Network (CNN) after learning. The proposed method was evaluated on the databases used for text detection in natural scene images: the competitions organized in 2017 edition of the International Conference on Document Analysis and Recognition (ICDAR2017), the Urdu-text database and our Natural Scene Image Database for Arabic Text detection (NSIDAT) database. The obtained experimental results seem to be interesting.


Author(s):  
Xuezhuan Zhao ◽  
Ziheng Zhou ◽  
Lingling Li ◽  
Lishen Pei ◽  
Zhaoyi Ye

Due to the robustness resulted from scale transformation and unbalanced distribution of training samples in scene text detection task, a new fusion framework TSFnet is proposed in this paper. This framework is composed of Detection Stream, Judge Stream and Fusion Stream. In the Detection Stream, loss balance factor (LBF) is raised to improve the region proposal network (RPN). To predict the global text segmentation map, the algorithm combines regression strategy and case segmentation method. In the Judge Stream, a classification of the samples is proposed based on the Judge Map and the corresponding tags to calculate the overlap rate. As a support of Detection Stream, feature pyramid network is utilized in the algorithm to extract Judge Map and calculate LBF. In the Fusion Stream, a new fusion algorithm is raised. By fusing the output of the two streams, we can position the text area in the natural scene accurately. Finally, the algorithm is experimented on the standard data sets ICDAR 2015 and ICDAR2017-MLT. The test results show that the [Formula: see text] values are 87.8% and 67.57%, respectively, superior to the state-of-the art models. This proves that the algorithm can solve the robustness issues under the unbalance between scale transformation and training data.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


Author(s):  
Sankirti Sandeep Shiravale ◽  
R. Jayadevan ◽  
Sanjeev S. Sannakki

Text present in a camera captured scene images is semantically rich and can be used for image understanding. Automatic detection, extraction, and recognition of text are crucial in image understanding applications. Text detection from natural scene images is a tedious task due to complex background, uneven light conditions, multi-coloured and multi-sized font. Two techniques, namely ‘edge detection' and ‘colour-based clustering', are combined in this paper to detect text in scene images. Region properties are used for elimination of falsely generated annotations. A dataset of 1250 images is created and used for experimentation. Experimental results show that the combined approach performs better than the individual approaches.


2021 ◽  
Vol 69 (4) ◽  
pp. 297-306
Author(s):  
Julius Krause ◽  
Maurice Günder ◽  
Daniel Schulz ◽  
Robin Gruna

Abstract The selection of training data determines the quality of a chemometric calibration model. In order to cover the entire parameter space of known influencing parameters, an experimental design is usually created. Nevertheless, even with a carefully prepared Design of Experiment (DoE), redundant reference analyses are often performed during the analysis of agricultural products. Because the number of possible reference analyses is usually very limited, the presented active learning approaches are intended to provide a tool for better selection of training samples.


2017 ◽  
Vol 260 ◽  
pp. 112-122 ◽  
Author(s):  
Chunna Tian ◽  
Yong Xia ◽  
Xiangnan Zhang ◽  
Xinbo Gao

Sign in / Sign up

Export Citation Format

Share Document