scholarly journals Experience of application of IgY-technology for laboratory diagnostics of viral infections

2020 ◽  
Vol 65 (1) ◽  
pp. 21-26 ◽  
Author(s):  
A. P. Ivanov ◽  
T. D. Klebleeva ◽  
O. E. Ivanova

Introduction. The well-known advantages of class Y antibodies (IgY) from egg yolks of immunized hens in comparison with class G antibodies (IgG) of laboratory animals traditionally used in laboratory diagnosis of infectious diseases determine the stable interest of researchers in using IgY for these purposes (IgY technology) . Over the past 20 years, the obvious benefits of IgY technology have been demonstrated for a number of viral and bacterial infections. Goals and objectives. Construction of ELISA systems based on specific IgY for laboratory diagnosis of infections caused by tick-borne encephalitis virus, yellow fever virus, poliovirus.Material and methods. Obtaining yolk preparations of immunized chickens, obtaining highly purified IgY preparations (salting out, affinity chromatography), constructing ELISA systems for determining virus-specific antigens, testing the parameters of ELISA systems.Results and discussion. For the first time in laboratory practice, ELISA systems based on the use of specific polyclonal IgY were designed for laboratory diagnosis of topical human viral infections caused by flaviviruses and enteroviruses: determination of antigens of tick-borne encephalitis virus, yellow fever virus, 3 types of poliovirus. It was experimentally shown that these ELISA systems have high sensitivity and specificity, which allows them to be used for the semiquantitative and quantitative determination of antigens of these viruses in various materials (infected cell cultures, vaccines, etc.).Conclusion. The ELISA systems developed on the basis of specific IgY for determination of viral antigens can be effectively used for laboratory diagnosis of a number of viral infections, for the validation and control of vaccine preparations.

2011 ◽  
Vol 90 (2) ◽  
pp. A45 ◽  
Author(s):  
Liubov Terekhina ◽  
Nataliya Pripuzova ◽  
Mikhail Vorovitch ◽  
Yulia Rogova ◽  
Lidiya Romanova ◽  
...  

2019 ◽  
Vol 38 (12) ◽  
pp. 1414-1417 ◽  
Author(s):  
Maudry Laurent-Rolle ◽  
Juliet Morrison

2011 ◽  
Vol 92 (12) ◽  
pp. 2821-2829 ◽  
Author(s):  
Karen L. Mansfield ◽  
Daniel L. Horton ◽  
Nicholas Johnson ◽  
Li Li ◽  
Alan D. T. Barrett ◽  
...  

Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.


2017 ◽  
Vol 87 ◽  
pp. 381-387 ◽  
Author(s):  
Carolina Colombelli Pacca ◽  
Rafael Elias Marques ◽  
José Wanderlan P. Espindola ◽  
Gevânio B.O.Oliveira Filho ◽  
Ana Cristina Lima Leite ◽  
...  

2009 ◽  
Vol 84 (2) ◽  
pp. 765-772 ◽  
Author(s):  
Amadou A. Sall ◽  
Ousmane Faye ◽  
Mawlouth Diallo ◽  
Cadhla Firth ◽  
Andrew Kitchen ◽  
...  

ABSTRACT Although yellow fever has historically been one of the most important viral infections of humans, relatively little is known about the evolutionary processes that shape its genetic diversity. Similarly, there is limited information on the molecular epidemiology of yellow fever virus (YFV) in Africa even though it most likely first emerged on this continent. Through an analysis of complete E gene sequences, including a newly acquired viral collection from Central and West Africa (Senegal, Cameroon, Central African Republic, Côte d'Ivoire, Mali, and Mauritania), we show that YFV exhibits markedly lower rates of evolutionary change than dengue virus, despite numerous biological similarities between these two viruses. From this observation, along with a lack of clock-like evolutionary behavior in YFV, we suggest that vertical transmission, itself characterized by lower replication rates, may play an important role in the evolution of YFV in its enzootic setting. Despite a reduced rate of nucleotide substitution, phylogenetic patterns and estimates of times to common ancestry in YFV still accord well with the dual histories of colonialism and the slave trade, with areas of sylvatic transmission (such as Kedougou, Senegal) acting as enzootic/epidemic foci.


2011 ◽  
Vol 55 (5) ◽  
pp. 2067-2073 ◽  
Author(s):  
Justin G. Julander ◽  
Jane Ennis ◽  
Jeffrey Turner ◽  
John D. Morrey

ABSTRACTInterferon (IFN) is an innate immune response protein that is involved in the antiviral response during viral infection. Treatment of acute viral infections with exogenous interferon may be effective but is generally not feasible for clinical use due to many factors, including cost, stability, and availability. To overcome these limitations, an adenovirus type 5-vectored consensus alpha IFN, termed DEF201, was constructed as a potential way to deliver sustained therapeutic levels of systemic IFN. To demonstrate the efficacy of DEF201 against acute flaviviral disease, various concentrations of the construct were administered as a single intranasal dose prior to virus infection, which resulted in a dose-responsive, protective effect in a hamster model of yellow fever virus (YFV) disease. A DEF201 dose of 5 × 107PFU/animal administered intranasally just prior to YFV challenge protected 100% of the animals, while a 10-fold lower DEF201 dose exhibited lower, although significant, levels of protection. Virus titers in the liver and serum and levels of serum alanine aminotransferase were all significantly reduced as a result of DEF201 administration at all doses tested. No toxicity, as indicated by weight loss or gross morbidity, was observed in non-YFV-infected animals treated with DEF201. Protection of YFV-infected animals was observed when DEF201 was delivered as early as 7 days prior to virus challenge and as late as 2 days after virus challenge, demonstrating effective prophylaxis and therapy in a hamster model of disease. Overall, it appears that DEF201 is effective in the treatment of YFV in a hamster model.


2007 ◽  
Vol 15 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Matthias Niedrig ◽  
Oliver Kürsteiner ◽  
Christian Herzog ◽  
Karen Sonnenberg

ABSTRACT The first commercial indirect immunofluorescence assay (IFA) using Euroimmun Biochip technology was evaluated for the serodiagnosis of immunoglobulin G (IgG) and IgM antibodies against yellow fever virus (YFV) and was compared with the plaque reduction neutralization test (PRNT), which is currently the gold standard test for YFV. An overall correlation between the tests of 98.7% was established based on the analysis of 150 sera from individuals after vaccination with the 17D yellow fever vaccine. The sensitivity and specificity, calculated using the 150 sera from vaccinees and 150 sera from healthy blood donors, were 95% and 95%, respectively, for the IgG IFA and 94% and 97% for the IgM IFA. Antibody titers found in the PRNT correlated poorly with the IgM and IgG titers detected by IFA. The analysis of preexisting heterologous flaviviral immunity revealed the presence of antibodies reactive with YFV, tick-borne encephalitis virus, West Nile virus, Japanese encephalitis virus, and dengue virus serotypes 1 to 4 in 20 out of the 150 vaccinees. The indirect IFA showed that nine of these individuals with previous flaviviral exposure who received 17D vaccine failed to produce detectable IgM antibodies. Despite this preexisting immunity, all vaccinees developed protective immunity as detected by PRNT and anti-YFV IgG antibodies as detected by IFA. The high specificity and sensitivity of the IFA make it a useful tool for rapid diagnosis of yellow fever during outbreaks, for epidemiological studies, and for serosurveillance after vaccination.


Sign in / Sign up

Export Citation Format

Share Document