Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus

2017 ◽  
Vol 87 ◽  
pp. 381-387 ◽  
Author(s):  
Carolina Colombelli Pacca ◽  
Rafael Elias Marques ◽  
José Wanderlan P. Espindola ◽  
Gevânio B.O.Oliveira Filho ◽  
Ana Cristina Lima Leite ◽  
...  
2020 ◽  
Vol 65 (1) ◽  
pp. 21-26 ◽  
Author(s):  
A. P. Ivanov ◽  
T. D. Klebleeva ◽  
O. E. Ivanova

Introduction. The well-known advantages of class Y antibodies (IgY) from egg yolks of immunized hens in comparison with class G antibodies (IgG) of laboratory animals traditionally used in laboratory diagnosis of infectious diseases determine the stable interest of researchers in using IgY for these purposes (IgY technology) . Over the past 20 years, the obvious benefits of IgY technology have been demonstrated for a number of viral and bacterial infections. Goals and objectives. Construction of ELISA systems based on specific IgY for laboratory diagnosis of infections caused by tick-borne encephalitis virus, yellow fever virus, poliovirus.Material and methods. Obtaining yolk preparations of immunized chickens, obtaining highly purified IgY preparations (salting out, affinity chromatography), constructing ELISA systems for determining virus-specific antigens, testing the parameters of ELISA systems.Results and discussion. For the first time in laboratory practice, ELISA systems based on the use of specific polyclonal IgY were designed for laboratory diagnosis of topical human viral infections caused by flaviviruses and enteroviruses: determination of antigens of tick-borne encephalitis virus, yellow fever virus, 3 types of poliovirus. It was experimentally shown that these ELISA systems have high sensitivity and specificity, which allows them to be used for the semiquantitative and quantitative determination of antigens of these viruses in various materials (infected cell cultures, vaccines, etc.).Conclusion. The ELISA systems developed on the basis of specific IgY for determination of viral antigens can be effectively used for laboratory diagnosis of a number of viral infections, for the validation and control of vaccine preparations.


2007 ◽  
Vol 15 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Matthias Niedrig ◽  
Oliver Kürsteiner ◽  
Christian Herzog ◽  
Karen Sonnenberg

ABSTRACT The first commercial indirect immunofluorescence assay (IFA) using Euroimmun Biochip technology was evaluated for the serodiagnosis of immunoglobulin G (IgG) and IgM antibodies against yellow fever virus (YFV) and was compared with the plaque reduction neutralization test (PRNT), which is currently the gold standard test for YFV. An overall correlation between the tests of 98.7% was established based on the analysis of 150 sera from individuals after vaccination with the 17D yellow fever vaccine. The sensitivity and specificity, calculated using the 150 sera from vaccinees and 150 sera from healthy blood donors, were 95% and 95%, respectively, for the IgG IFA and 94% and 97% for the IgM IFA. Antibody titers found in the PRNT correlated poorly with the IgM and IgG titers detected by IFA. The analysis of preexisting heterologous flaviviral immunity revealed the presence of antibodies reactive with YFV, tick-borne encephalitis virus, West Nile virus, Japanese encephalitis virus, and dengue virus serotypes 1 to 4 in 20 out of the 150 vaccinees. The indirect IFA showed that nine of these individuals with previous flaviviral exposure who received 17D vaccine failed to produce detectable IgM antibodies. Despite this preexisting immunity, all vaccinees developed protective immunity as detected by PRNT and anti-YFV IgG antibodies as detected by IFA. The high specificity and sensitivity of the IFA make it a useful tool for rapid diagnosis of yellow fever during outbreaks, for epidemiological studies, and for serosurveillance after vaccination.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Keivan Zandi ◽  
Franck Amblard ◽  
Sarah Amichai ◽  
Leda Bassit ◽  
Sijia Tao ◽  
...  

ABSTRACT Yellow fever virus (YFV) is a human Flavivirus reemerging in parts of the world. While a vaccine is available, large outbreaks have recently occurred in Brazil and certain African countries. Development of an effective antiviral against YFV is crucial, as there is no available effective drug against YFV. We have identified several novel nucleoside analogs with potent antiviral activity against YFV with 50% effective concentration (EC50) values between 0.25 and 1 μM with selectivity indices over 100 in culture.


2007 ◽  
Vol 1 (03) ◽  
pp. 315-320 ◽  
Author(s):  
Charles O. Esimone ◽  
Kenneth C. Ofokansi ◽  
Michael U. Adikwu ◽  
Emmanuel C. Ibezim ◽  
Dominic O. Abonyi ◽  
...  

Background: Substances extracted from lichens have previously been reported to possess antimicrobial activities against various groups of bacteria, fungi and viruses. Due to the high abundance of Parmelia perlata in the Eastern parts of Nigeria, we decided to explore whether it possesses antiviral activity against some common animal and human viruses. Methodology: The dried and powdered lichen was extracted with acetone, water and 4% (v/v) NaOH (to yield a crude polysaccharide fraction) using standard methods. The cytotoxicity of the extracts was investigated on HEP-2, Vero and L20 cell lines. The antiviral properties were determined against yellow fever, poliomyelitis and infectious bursal disease virus of chickens using the end-point cytopathic effect assay. Phytochemical evaluations of the extracts were also carried out. Results: Phytochemical tests showed the presence of flavonoids, saponins, tannins, glycosides, steroidal aglycone, carbohydrates and also the presence, in trace amounts, of some oligodynamic elements. Cytotoxicity tests revealed that while L20 was susceptible to the extracts at a concentration of 50 μg/ml, the extracts were generally toxic to the cell lines at concentrations above 500 μg/ml. The order of sensitivity of the cell lines was L20 > HEP-2 > Vero. The water and acetone extracts showed no activity against the viruses when tested at concentrations below the cytotoxic level while the crude polysaccharide fraction showed activity against yellow fever virus with an IC50 of 15 μg/ml. The time of addition of the test extracts to the infected cells did not have significant effect on cytopathic effect inhibition. Conclusions: The results showed that the crude polysaccharide fraction from Parmelia perlata possesses specific antiviral activity against yellow fever virus. It is postulated that a major mechanism of inhibition of yellow fever infection by the crude polysaccharide fraction of the lichen could be by attack on the viral envelope.


2013 ◽  
Vol 8 (2) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Luz Angela Gómez ◽  
Elena Stashenko ◽  
Raquel Elvira Ocazionez

The aim of this study was to compare the antiviral activities in vitro of citral, limonene and essential oils (EOs) from Lippia citriodora and L. alba on the replication of yellow fever virus (YFV). Citral and EOs were active before and after virus adsorption on cells; IC50 values were between 4.3 and 25 μg/mL and SI ranged from 1.1 to 10.8. Results indicate that citral could contribute to the antiviral activity of the L. citriodora EO. Limonene was not active and seemed to play an insignificant role in the antiviral activity of the examined EOs.


2015 ◽  
Vol 57 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Letícia Borges da Silva HEINEN ◽  
Nayara ZUCHI ◽  
Otacília Pereira SERRA ◽  
Belgath Fernandes CARDOSO ◽  
Breno Herman Ferreira GONDIM ◽  
...  

The dengue virus (DENV), which is frequently involved in large epidemics, and the yellow fever virus (YFV), which is responsible for sporadic sylvatic outbreaks, are considered the most important flaviviruses circulating in Brazil. Because of that, laboratorial diagnosis of acute undifferentiated febrile illness during epidemic periods is frequently directed towards these viruses, which may eventually hinder the detection of other circulating flaviviruses, including the Saint Louis encephalitis virus (SLEV), which is widely dispersed across the Americas. The aim of this study was to conduct a molecular investigation of 11 flaviviruses using 604 serum samples obtained from patients during a large dengue fever outbreak in the state of Mato Grosso (MT) between 2011 and 2012. Simultaneously, 3,433 female Culex spp. collected with Nasci aspirators in the city of Cuiabá, MT, in 2013, and allocated to 409 pools containing 1-10 mosquitoes, were also tested by multiplex semi-nested reverse transcription PCR for the same flaviviruses. SLEV was detected in three patients co-infected with DENV-4 from the cities of Cuiabá and Várzea Grande. One of them was a triple co-infection with DENV-1. None of them mentioned recent travel or access to sylvatic/rural regions, indicating that transmission might have occurred within the metropolitan area. Regarding mosquito samples, one pool containing one Culex quinquefasciatus female was positive for SLEV, with a minimum infection rate (MIR) of 0.29 per 1000 specimens of this species. Phylogenetic analysis indicates both human and mosquito SLEV cluster, with isolates from genotype V-A obtained from animals in the Amazon region, in the state of Pará. This is the first report of SLEV molecular identification in MT.


Author(s):  
Eduardo Troian ◽  
Karoline Schallenberger ◽  
Francini Da Silva ◽  
Gabriela Dietrich ◽  
Fernando Ferreira Chiesa ◽  
...  

Yellow Fever Virus (YFV) and Chikungunya Virus (CHIV) are neglected reemerging pathogens that cause comorbidities worldwide. Since no antiviral drug is prescribed for those infections, there is a demand on researching compounds that inhibit viral replication. Saponins are amphiphilic compounds that already demonstrated in vitro activity against enveloped virus. Therefore, two purified saponin fractions from Quillaja spp. were evaluated regarding their antiviral potential against YFV and CHIKV. The cell line used in this study was VERO (African green monkey kidney cells) since it is permissive to the replication of both viruses. The antiviral activity of both saponins fractions was screened using the plaque reduction assay protocol. Although saponins did not inhibited YFV replication, they strongly inhibited CHIKV. To confirm the absence of antiviral activity of Quillaja saponins against YFV, the cytopathic effect inhibition assay was performed also. Further studies are required to determine the antiviral mechanisms involved in the CHIKV inhibition.


2001 ◽  
Vol 75 (2) ◽  
pp. 934-942 ◽  
Author(s):  
Juan Arroyo ◽  
Farshad Guirakhoo ◽  
Sabine Fenner ◽  
Zhen-Xi Zhang ◽  
Thomas P. Monath ◽  
...  

ABSTRACT A yellow fever virus (YFV)/Japanese encephalitis virus (JEV) chimera in which the structural proteins prM and E of YFV 17D are replaced with those of the JEV SA14-14-2 vaccine strain is under evaluation as a candidate vaccine against Japanese encephalitis. The chimera (YFV/JEV SA14-14-2, or ChimeriVax-JE) is less neurovirulent than is YFV 17D vaccine in mouse and nonhuman primate models (F. Guirakhoo et al., Virology 257:363–372, 1999; T. P. Monath et al., Vaccine 17:1869–1882, 1999). Attenuation depends on the presence of the JEV SA14-14-2 E protein, as shown by the high neurovirulence of an analogous YFV/JEV Nakayama chimera derived from the wild JEV Nakayama strain (T. J. Chambers, A. Nestorowicz, P. W. Mason, and C. M. Rice, J. Virol. 73:3095–3101, 1999). Ten amino acid differences exist between the E proteins of ChimeriVax-JE and the YFV/JEV Nakayama virus, four of which are predicted to be neurovirulence determinants based on various sequence comparisons. To identify residues that are involved in attenuation, a series of intratypic YFV/JEV chimeras containing either single or multiple amino acid substitutions were engineered and tested for mouse neurovirulence. Reversions in at least three distinct clusters were required to restore the neurovirulence typical of the YFV/JEV Nakayama virus. Different combinations of cluster-specific reversions could confer neurovirulence; however, residue 138 of the E protein (E138) exhibited a dominant effect. No single amino acid reversion produced a phenotype significantly different from that of the ChimeriVax-JE parent. Together with the known genetic stability of the virus during prolonged cell culture and mouse brain passage, these findings support the candidacy of this experimental vaccine as a novel live-attenuated viral vaccine against Japanese encephalitis.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 549
Author(s):  
Sujogya Kumar Panda ◽  
Ana Hortência Fonsêca Castro ◽  
Ramin Saleh Jouneghani ◽  
Pieter Leyssen ◽  
Johan Neyts ◽  
...  

Chikungunya and yellow fever virus cause vector-borne viral diseases in humans. There is currently no specific antiviral drug for either of these diseases. Banana plants are used in traditional medicine for treating viral diseases such as measles and chickenpox. Therefore, we tested selected banana cultivars for their antiviral but also cytotoxic properties. Different parts such as leaf, pseudostem and corm, collected separately and extracted with four different solvents (hexane, acetone, ethanol, and water), were tested for in vitro antiviral activity against Chikungunya virus (CHIKV), enterovirus 71 (EV71), and yellow fever virus (YFV). Extracts prepared with acetone and ethanol from leaf parts of several cultivars exhibited strong (EC50 around 10 μg/mL) anti-CHIKV activity. Interestingly, none of the banana plant extracts (concentration 1–100 µg/mL) were active against EV71. Activity against YFV was restricted to two cultivars: Namwa Khom–Pseudostem–Ethanol (5.9 ± 5.4), Namwa Khom–Corm–Ethanol (0.79 ± 0.1) and Fougamou–Corm–Acetone (2.5 ± 1.5). In most cases, the cytotoxic activity of the extracts was generally 5- to 10-fold lower than the antiviral activity, suggesting a reasonable therapeutic window.


Sign in / Sign up

Export Citation Format

Share Document