scholarly journals Sentinel-2 e campionamenti in situ per il monitoraggio delle acque marine dell’Abruzzo: primi risultati

Author(s):  
Carla Ippoliti ◽  
Susanna Tora ◽  
Carla Giansante ◽  
Romolo Salini ◽  
Federico Filipponi ◽  
...  

In this study, the estimate of chlorophyll "a" and the dispersion of sediment in the sea, calculated from Sentinel-2, was compared with real data acquired in situ by a multiparametric probe, along the Abruzzo coast. The ultimate goal is to optimize parameters and algorithms to be able to derive concentration maps of chlorophyll and suspended solids from satellite, taking advantage of the high time frequency and high spatial resolution of the detections. This information is of particular relevance for aquaculture activities, for monitoring water quality and for analyzing sedimentary processes.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


Author(s):  
P. Scarth ◽  
R. Trevithick

Significant progress has been made in the development of cover data and derived products based on remotely sensed fractional cover information and field data across Australia, and these cover data sets are now used for quantifying and monitoring grazing land condition. The availability of a dense time-series of nearly 30 years of cover data to describe the spatial and temporal patterns in landscape changes over time can help with monitoring the effectiveness of grazing land management practice change. With the advent of higher spatial resolution data, such as that provided by the Copernicus Sentinel 2 series of satellites, we can look beyond reporting purely on cover amount and more closely at the operational monitoring and reporting on spatial arrangement of cover and its links with land condition. We collected high spatial resolution cover transects at 20 cm intervals over the Wambiana grazing trials in the Burdekin catchment in Queensland, Australia. Spatial variance analysis was used to determine the cover autocorrelation at various support intervals. Coincident Sentinel-2 imagery was collected and processed over all the sites providing imagery to link with the field data. We show that the spatial arrangement and temporal dynamics of cover are important indicators of grazing land condition for both productivity and water quality outcomes. The metrics and products derived from this research will assist land managers to prioritize investment and practice change strategies for long term sustainability and improved water quality, particularly in the Great Barrier Reef catchments.


Author(s):  
Caitlyn C. Mayer ◽  
Khalid A. Ali

The Ashepoo, Combahee, Edisto (ACE) Basin in South Carolina is one of the largest undeveloped estuaries in the Southeastern United States. This system is monitored and protected by several government agencies to ensure its health and preservation. However, as populations in surrounding cities rapidly expand and land is urbanized, the surrounding water systems may decline from an influx of contaminants, leading to hypoxia, fish kills, and eutrophication. Conventional in situ water quality monitoring methods are timely and costly. Satellite remote sensing methods are used globally to monitor water systems and can produce an instantaneous synopsis of color-producing agents (CPAs), including chlorophyll-a, suspended matter (TSM), and colored-dissolved organic matter by applying bio-optical models. In this study, field, laboratory, and historical land use land cover (LULC) data were collected during the summers of 2002, 2011, 2015, and 2016. The results indicated higher levels of chlorophyll, ranging from 2.94 to 12.19 μg/L, and TSM values were from 60.4 to 155.2 mg/L between field seasons, with values increasing with time. A model was developed using multivariate, partial least squares regression (PLSR) to identify wavelengths that are more sensitive to chlorophyll-a (R2 = 0.49; RMSE = 1.8 μg/L) and TSM (R2 = 0.40; RMSE = 12.9 mg/L). The imbrication of absorption and reflectance features characterizing sediments and algal species in ACE Basin waters make it difficult for remote sensors to distinguish variations among in situ concentrations. The results from this study provide a strong foundation for the future of water quality monitoring and for the protection of biodiversity in the ACE basin.


Author(s):  
A. Manuel ◽  
A. C. Blanco ◽  
A. M. Tamondong ◽  
R. Jalbuena ◽  
O. Cabrera ◽  
...  

Abstract. Laguna Lake, the Philippines’ largest freshwater lake, has always been historically, economically, and ecologically significant to the people living near it. However, as it lies at the center of urban development in Metro Manila, it suffers from water quality degradation. Water quality sampling by current field methods is not enough to assess the spatial and temporal variations of water quality in the lake. Regular water quality monitoring is advised, and remote sensing addresses the need for a synchronized and frequent observation and provides an efficient way to obtain bio-optical water quality parameters. Optimization of bio-optical models is done as local parameters change regionally and seasonally, thus requiring calibration. Field spectral measurements and in-situ water quality data taken during simultaneous satellite overpass were used to calibrate the bio-optical modelling tool WASI-2D to get estimates of chlorophyll-a concentration from the corresponding Landsat-8 images. The initial output values for chlorophyll-a concentration, which ranges from 10–40 μg/L, has an RMSE of up to 10 μg/L when compared with in situ data. Further refinements in the initial and constant parameters of the model resulted in an improved chlorophyll-a concentration retrieval from the Landsat-8 images. The outputs provided a chlorophyll-a concentration range from 5–12 μg/L, well within the usual range of measured values in the lake, with an RMSE of 2.28 μg/L compared to in situ data.


2021 ◽  
Author(s):  
Amandine Declerck ◽  
Matthias Delpey ◽  
Thibaut Voirand ◽  
Ioanna Varkitzi

<p>Keywords: eutrophication; high resolution ocean modeling ; Chla satellite data ; biogeochemistry</p><p>Maliakos Gulf corresponds to mesotrophic waters that can reach eutrophic conditions and are occasionally subject to Harmful Algal Blooms (HAB) (Varkitzi et al. 2018). At the same time, it is an important fish farming and aquaculture production area. A large issue is thus related to the monitoring and forecasting of the risk of occurrence of algae blooms in the Gulf. For this purpose, the present study couples predictions from a high-resolution numerical ocean model with satellite observation to improve the monitoring and anticipation of threats for the local fish farms induced by occasional eutrophication.</p><p>This solution is developed in the frame of the MARINE-EO project (https://marine-eo.eu/). It combines satellite observation with high-resolution ocean modelling to provide detailed information as a support to fish farms management and operations. It is implemented in an operational platform, which provides continuous information in real time as well as short term predictions. The deployed solution uses CMEMS physical products as an input data and offers to refine this solution in order to provide a local information on site using a downscaling strategy. High resolution satellite products and ocean modelling allow to include the impact of local coastal processes on currents and water quality parameters to provide a proper monitoring and forecasting solution at the scale of a specific fish farm.</p><p>To model specific eutrophication processes, a NPZD (Nutrients-Phytoplankton-Zooplankton-Detritus) biogeochemical model is used. Included in the MOHID Water modelling system, the water quality module (Mateus, 2006) considering 18 properties: nutrients and organic matter (nitrogen, phosphorus and silica biogeochemical cycles), oxygen and organisms (phytoplankton and zooplankton) was deployed in the western Aegean Sea. The simulated chlorophyll a concentrations are used to compute a risk level for the eutrophication occurrence. To complete this indicator, another risk level was based on the eutrophication variation following Primpas et al. (2010) formulation. In addition to model forecasts, ocean color observations from the Sentinel-2 MSI and Landsat-8 OLI sensors are used to provide high resolution chlorophyll a concentrations maps in case of bloom events. The processing chain uses the sixth version of the Quasi-Analytical Algorithm initially developed by Lee et al. (2002) and an empirical relation based on a database built using the HydroLight software to compute chlorophyll a concentration.</p><p>Two past eutrophication events monitored in situ (Varkitzi et al. 2018) were studied to assess the accuracy of the developed tool. Although few in situ data were available on environmental input (as rivers flow and nutrient concentrations), it was possible using statistics to reproduce qualitatively these blooms. Finally, an operational demonstration was conducted during 2 months of the 2020 autumn season, to showcase real time monitoring and predictive perspectives.</p>


2019 ◽  
Vol 233 ◽  
pp. 111343 ◽  
Author(s):  
Francis Gohin ◽  
Dimitry Van der Zande ◽  
Gavin Tilstone ◽  
Marieke A. Eleveld ◽  
Alain Lefebvre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document