scholarly journals Lectures on Solid Mechanics

Author(s):  
Claudio Borri ◽  
Michele Betti ◽  
Enzo Marino

This volume presents the theoretical basics of solid mechanics collecting the lectures held by the Authors for the course of Mechanics of Solids to environmental engineering students at the University of Florence. Lectures on Solid Mechanics is organized in two parts. The first one introduces the theory of three-dimensional elasticity where, after a preparatory synthesis of the basic concepts of mathematics and geometry, the fundamental framework of strain and stress in elastic bodies are introduced. Then the classical law of linear elasticity is presented and finally the part concludes with the "Principle of Virtual Work and variational methods". Moreover, at the end of selected chapters the essential notions of the theory of shells are discussed. The second part concerns the traditional theory of beams focusing on the four fundamental cases: beam under axial forces, terminal couples, torsion, bending and shear. The Readers addressed by this volume are mainly the undergraduate students of Engineering Schools.

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
S. Salvadori ◽  
F. Montomoli ◽  
F. Martelli ◽  
P. Adami ◽  
K. S. Chana ◽  
...  

Computational fluid dynamics (CFD) prediction of the unsteady aerothermal interaction in the HP turbine stage, with inlet temperature nonuniformity, requires appropriate unsteady modeling and a low diffusive numerical scheme coupled with suitable turbulence models. This maybe referred to as high fidelity CFD. A numerical study has been conducted by the University of Florence in collaboration with ONERA to compare capabilities and limitations of their CFD codes for such flows. The test vehicle used for the investigation is a turbine stage of three-dimensional design from the QinetiQ turbine facility known as MT1. This stage is a high pressure transonic stage that has an unshrouded rotor, configured, and uncooled with 32 stators and 60 rotor blades. Two different CFD solvers are compared that use different unsteady treatments of the interaction. A reduced count ratio technique has been used by the University of Florence with its code HYBFLOW, while a phase lag model has been used by ONERA in their code, ELSA. Four different inlet conditions have been simulated and compared with focus on the experimental values provided by QinetiQ in the frame of TATEF and TATEF2 EU Sixth Framework Projects. The differences in terms of performance parameters and hot fluid redistribution, as well as the time- and pitch-averaged radial distributions on a plane downstream of the rotor blade, have been underlined. Special attention was given to the predictions of rotor blade unsteady pressure and heat transfer rates.


Author(s):  
Elizabeth Kuley ◽  
Sean Maw ◽  
Terry Fonstad

This paper focuses on feedback received from a set of qualitative questions that were administered to undergraduate students in the College of Engineering at the University of Saskatchewan, as part of a larger mixed methods study. The larger study aims to identify what characteristics, if any, can predict or are related to student success; The “start-stop-continue” method was utilized to assess student perceptions about  their success in the college as a whole. The students were asked: Are there any specific things that you can think of that act/acted as barriers to your success in engineering (stop)? What could the college do/change to make first year more successful for engineering students (start)? Is there anything in your engineering degree so far that you feel is done well and helps students succeed (continue)? Students identified the quality of instruction early in their program as well as adjustment to college workloads and self-directed learning as the most significant barriers tostudent success.


2021 ◽  
Author(s):  
Lester W. Schmerr Jr.

Build on the foundations of elementary mechanics of materials texts with this modern textbook that covers the analysis of stresses and strains in elastic bodies. Discover how all analyses of stress and strain are based on the four pillars of equilibrium, compatibility, stress-strain relations, and boundary conditions. These four principles are discussed and provide a bridge between elementary analyses and more detailed treatments with the theory of elasticity. Using MATLAB® extensively throughout, the author considers three-dimensional stress, strain and stress-strain relations in detail with matrix-vector relations. Based on classroom-proven material, this valuable resource provides a unified approach useful for advanced undergraduate students and graduate students, practicing engineers, and researchers.


Author(s):  
Francesco Martelli ◽  
Paolo Adami ◽  
Simone Salvadori ◽  
Kam S. Chana ◽  
Lionel Castillon

CFD prediction of the unsteady aero-thermal interaction in the HP turbine stage, with inlet temperature non-uniformity, requires appropriate unsteady modelling and a low diffusive numerical scheme coupled with suitable turbulence models. This maybe referred to as high fidelity CFD. A numerical study has been conducted by the University of Florence in collaboration with ONERA to compare capabilities and limitations of their CFD codes for such flows. The test vehicle used for the investigation is a turbine stage of three-dimensional design from the QinetiQ turbine facility known as MT1. This stage is a high pressure (HP) transonic stage that has an un-shrouded rotor, configured un-cooled with 32 stators and 60 rotor blades. Two different CFD solvers are compared that use different unsteady treatment of the interaction. A reduced count ratio technique has been used by the University of Florence with its code HybFlow, while a phase lag model has been used by ONERA in their code, elsA. Four different inlet conditions have been simulated and compared with a focus on the experimental values provided by QinetiQ in the frame of TATEF and TATEF2 EU 6th Framework projects. The differences in terms of performance parameters and hot fluid redistribution, as well as the time- and pitch-averaged radial distributions on a plane downstream of the rotor blade, have been underlined. Special attention was given to the predictions of rotor blade unsteady pressure and heat transfer rates.


2021 ◽  
Vol 11 (2) ◽  
pp. 20-37
Author(s):  
Franck Taillandier ◽  
Alice Micolier ◽  
Gérard Sauce ◽  
Myriam Chaplain

Construction project is a major learning of the civil engineering educational program. However, the related knowledge is difficult to apprehend and assimilate during lectures since it is theoretical and practical work or tutorials on the subject are scarce. To address this issue, the authors developed DOMEGO, a game for teaching construction projects to civil engineering students. This board game aims to provide students with active and experiential learning of the key issues of a construction project. In the game, each player embodies a stakeholder of a construction project and must carry out the project while meeting her/his objectives. DOMEGO has been successfully integrated into an instructional setting of undergraduate students in Civil Engineering at the University of Bordeaux and Polytech, Nice Engineering School. Student feedback collected in the post-game survey was very positive. However, a more thorough analysis with a real evaluation protocol would be necessary to validate the game interest to teach construction project.


2018 ◽  
Vol 42 (2) ◽  
pp. 360-367 ◽  
Author(s):  
Daniel Naveed Tavakol ◽  
Cara J. Broshkevitch ◽  
William H. Guilford ◽  
Shayn M. Peirce

In the Undergraduate School of Engineering and Applied Sciences (SEAS) at the University of Virginia (UVa), there are few opportunities for undergraduate students to teach, let alone develop, an introductory course for their major. As two undergraduate engineering students (D. N. Tavakol and C. J. Broshkevitch), we were among the first students to take advantage of a new initiative at UVa SEAS to offer student-led courses. As part of this new program, we designed a 1000-level, 1-credit, pass-fail course entitled Introduction to Research in Regenerative Medicine. During a student’s first year at the University, opportunities to build research skills and gain exposure to topics within the field of the biomedical sciences are relatively rare, so, to fill this gap, we focused our course on teaching primarily freshman undergraduate students how to synthesize and contextualize scientific literature, covering both basic science and clinical applications. At the end of the course, students self-reported increased confidence in reading and discussing scientific papers and review articles. The critical impact of this course lies not only in an early introduction to the popularized field of regenerative medicine, but also encouragement for younger students to participate in research early on and to appreciate the value of interdisciplinary interactions. The teaching model can be extended for implementation of student-taught introductory courses across diverse undergraduate major tracks at an institution.


Author(s):  
Lallit Anand ◽  
Sanjay Govindjee

Continuum mechanics of Solids presents a unified treatment of the major concepts in Solid Mechanics for beginning graduate students in the many branches of engineering. The fundamental topics of kinematics in finite and infinitesimal deformation, mechanical and thermodynamic balances plus entropy imbalance in the small strain setting are covered as they apply to all solids. The major material models of Elasticity, Viscoelasticity, and Plasticity are detailed and models for Fracture and Fatigue are discussed. In addition to these topics in Solid Mechanics, because of the growing need for engineering students to have a knowledge of the coupled multi-physics response of materials in modern technologies related to the environment and energy, the book also includes chapters on Thermoelasticity, Chemoelasticity, Poroelasticity, and Piezoelectricity. A preview to the theory of finite elasticity and elastomeric materials is also given. Throughout, example computations are presented to highlight how the developed theories may be applied.


Author(s):  
Miranda Armstrong ◽  
Jackie Dannatt ◽  
Adrian Evans

The academic writing module for electrical engineering students, offered at the University of Bath, is the result of collaboration between the Department of Electronic and Electrical Engineering (EEE) and the English Language Centre (ELC) and is currently designed to deliver academic writing support to undergraduate students embarking on their engineering studies at Bath. The need for the course arose from subject tutor recognition of the students’ lack of awareness of the genre within which they were expected to write, suggesting that not only the subject content but also the expression of that content needed input and support. This paper presents details of the academic writing input provided by the University of Bath English Language Centre, the background to the module and ongoing development based on feedback from students, academic staff and EAP (English for Academic Purposes) tutors. Feedback indicates that the course succeeds in supporting students in their writing. The principal direction for future development lies in tailoring the course to fit the modular nature of students’ degrees, addressing issues connected to language proficiency and the nature of assessment.


Author(s):  
Jean Koster ◽  
Ewald Kraemer ◽  
Claus-Dieter Munz ◽  
Dries Verstraete ◽  
K. C. Wong ◽  
...  

A delocalized international team of Graduate and Undergraduate students conceive, design, implement, and operate a 3 meter wingspan aircraft with the intent to investigate numerous new ‘green’ aircraft technologies. The project, known as Hyperion, teaches essential systems engineering skills through long-distance design collaborations with multidisciplinary teams of engineering students located around the world. Project partners are the University of Colorado at Boulder, USA, the University of Sydney, Australia, and the University of Stuttgart, Germany. The teams on three continents are distributed 8 hours apart; students can relay select work daily so that progress can “Follow The Sun (FTS).” As a result three workdays are packaged in one 24 hour period. The student teams operate as a single, independent entity; structuring themselves as a simulated industry operation. Thus, project management and systems engineering principles are learned through a real-world design and deliver experience. The project also teaches delocalized manufacturing: select components are manufactured by each team and integrated both in Stuttgart and Colorado, giving the students an opportunity to learn multifaceted design for manufacturing. The project incubated many problems which lead to mitigation techniques for global collaboration as well as generating a better educated workforce to enter modern industry.


Author(s):  
Vishnu Vardhan Chandrasekaran ◽  
Lewis N. Payton ◽  
Chase Wortman ◽  
Wesley Hunko

Designers in any industry need to understand the processes involved in making a part beforehand in order to communicate with technicians from trade schools and industry. Even a simple engineering drawing can often not be created due to process limitations (e.g., a perfectly drawn internal 90 degree angle in a CAD drawing does not occur in nature OR in a machine shop). This paper describes an affordable way to teach manufacturing to undergraduate engineering students and in the process provide them with hands on training in a machine shop environment. The goal here is not to create machinists, but to enable future Engineers to understand and talk with designers/machinists. The theme here is not to spend on expensive super machines but on simple machines as emphasized in the Toyota Production System. Students learn the techniques that let technicians produce perfect parts on imperfect, simple machines. The result for Auburn University has been an affordable laboratory that mutually supports undergraduate students, graduate research students, and the university as a whole.


Sign in / Sign up

Export Citation Format

Share Document