scholarly journals Assessment of antimitotic and programmed cell death stimulation potentials of Galium sinaicum (Delile ex Decne) Boiss. at cellular level

Caryologia ◽  
2021 ◽  
Author(s):  
Dr/ Shaimaa Selmi Sobieh

Galium sinaicum is a wild medicinal plant in saint Catherine, Egypt. To distinguish apoptotic effect of G. sinaicum ethanol extract (GsEE), we examined the role of GsEE in inducing programmed cell death (PCD) of Allium cepa root meristematic cell (AcR). Cells was subjected to GsEE in definite concentrations (0.1,0.3, 0.5%) and duration (6, 12h), then PCD induction was assessed. Application of GsEE arrested the mitotic division of AcR with metaphase accumulation. Electron microscopy analysis demonstrated ultrastructural alterations of organelles verifying PCD hallmarks. Protein electrophoresis analysis of AcR revealed a change in protein profile of Allium cepa root, also quantitative analysis showed significant increase in nuclease activity enzymes that stimulated DNA laddering fragmentation. Additionally, cell proliferation of MCF-7 and BHK21 was arrested by GsEE. Apoptotic effect of G. sinaicum may be attributed to the presence of potent phenolic compounds such as querectin and rutin as established by HPLC phenolic fingerprint analysis.

2008 ◽  
Vol 159 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Hiroshi Bannai ◽  
Yoshifumi Nishikawa ◽  
Tomohide Matsuo ◽  
Osamu Kawase ◽  
Junichi Watanabe ◽  
...  

2019 ◽  
Author(s):  
P. Seyed Mir ◽  
A.-S. Berghoff ◽  
M. Preusser ◽  
G. Ricken ◽  
J. Riedl ◽  
...  

2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


Author(s):  
Luciano Carotenuto ◽  
Vincenza Pace ◽  
Dina Bellizzi ◽  
Giovanna De Benedictis

Author(s):  
L. M. Sosedova ◽  
V. S. Rukavishnikov ◽  
E. A. Titov

The results of a study on rats toxicity of nanoparticles of metals bismuth, gadolinium and silver encapsulated in a natural biopolymer matrix arabinogalactan are presented. When intake of nanocomposite of silver revealed the readiness of the brain cell to apoptosis. The effect of bismuth and gadolinium nanocomposites did not cause an increase in the process of programmed cell death.


Sign in / Sign up

Export Citation Format

Share Document