Dynamical analysis of the programmed cell death pathway

Author(s):  
Luciano Carotenuto ◽  
Vincenza Pace ◽  
Dina Bellizzi ◽  
Giovanna De Benedictis
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Francesco Monticolo ◽  
Emanuela Palomba ◽  
Maria Luisa Chiusano

AbstractProgrammed cell death involves complex molecular pathways in both eukaryotes and prokaryotes. In Escherichia coli, the toxin–antitoxin system (TA-system) has been described as a programmed cell death pathway in which mRNA and ribosome organizations are modified, favoring the production of specific death-related proteins, but also of a minor portion of survival proteins, determining the destiny of the cell population. In the eukaryote Saccharomyces cerevisiae, the ribosome was shown to change its stoichiometry in terms of ribosomal protein content during stress response, affecting the relative proportion between ohnologs, i.e., the couple of paralogs derived by a whole genome duplication event. Here, we confirm the differential expression of ribosomal proteins in yeast also during programmed cell death induced by acetic acid, and we highlight that also in this case pairs of ohnologs are involved. We also show that there are different trends in cytosolic and mitochondrial ribosomal proteins gene expression during the process. Moreover, we show that the exposure to acetic acid induces the differential expression of further genes coding for products related to translation processes and to rRNA post-transcriptional maturation, involving mRNA decapping, affecting translation accuracy, and snoRNA synthesis. Our results suggest that the reprogramming of the overall translation apparatus, including the cytosolic ribosome reorganization, are relevant events in yeast programmed cell death induced by acetic acid.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer M. Peña ◽  
Samantha M. Prezioso ◽  
Kirsty A. McFarland ◽  
Tracy K. Kambara ◽  
Kathryn M. Ramsey ◽  
...  

AbstractIn Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.


2009 ◽  
Vol 11 (1) ◽  
pp. 138-155 ◽  
Author(s):  
Oliver Goldmann ◽  
Inka Sastalla ◽  
Melissa Wos-Oxley ◽  
Manfred Rohde ◽  
Eva Medina

mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Liselot Dewachter ◽  
Natalie Verstraeten ◽  
Daniel Monteyne ◽  
Cyrielle Ines Kint ◽  
Wim Versées ◽  
...  

ABSTRACT Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. IMPORTANCE Programmed cell death (PCD) is a well-known phenomenon in higher eukaryotes. In these organisms, PCD is essential for embryonic development—for example, the disappearance of the interdigital web—and also functions in tissue homeostasis and elimination of pathogen-invaded cells. The existence of PCD mechanisms in unicellular organisms like bacteria, on the other hand, has only recently begun to be recognized. We here demonstrate the existence of a bacterial PCD pathway that induces characteristics that are strikingly reminiscent of eukaryotic apoptosis, such as fragmentation of DNA, exposure of phosphatidylserine on the cell surface, and membrane blebbing. Our results can provide more insight into the mechanism and evolution of PCD pathways in higher eukaryotes. More importantly, especially in the light of the looming antibiotic crisis, they may point to a bacterial Achilles’ heel and can inspire innovative ways of combating bacterial infections, directed at the targeted activation of PCD pathways.


Virology ◽  
2013 ◽  
Vol 435 (2) ◽  
pp. 250-257 ◽  
Author(s):  
A. Louise McCormick ◽  
Linda Roback ◽  
Grace Wynn ◽  
Edward S. Mocarski

1997 ◽  
Vol 12 (2) ◽  
pp. 267-280 ◽  
Author(s):  
Paul F. McCabe ◽  
Alex Levine ◽  
Per-Johan Meijer ◽  
Nicolas A. Tapon ◽  
Roger I. Pennell

1997 ◽  
Vol 186 (2) ◽  
pp. 127-138 ◽  
Author(s):  
Giovanna Marazzi ◽  
Yaoqi Wang ◽  
David Sassoon

Sign in / Sign up

Export Citation Format

Share Document