scholarly journals Comparison of Direct Displacement-based Design with Force-based Design for Lead Rubber Bearing base-isolated buildings.

Author(s):  
Vidyadhar Bommeri ◽  
Govardhan Bhatt
2012 ◽  
Vol 594-597 ◽  
pp. 795-799
Author(s):  
Gui Tao Chen ◽  
De Min Wei

A displacement-based optimization design method of RC structure was proposed by combining direct displacement-based design method with nonlinear programming technique. To avert the influence of target displacement, the stationary constraint displacement was presented, and the target displacement can be updated during the optimal design process. Principle of virtual work and Gaussian integral method was employed to simplify the explicit relationship between horizontal displacement and the section dimension. Comparison analysis of the local optimal results corresponding to different displacement shapes was conducted to achieve global optimal design. The numerical tests presented demonstrate the computational advantages of the discussed methods and suggesting that the proposed method is a reliably and efficiently tool for displacement-based optimal design.


Author(s):  
Iswandi Imran ◽  
Marie Hamidah ◽  
Tri Suryadi ◽  
Hasan Al-Harris ◽  
Syamsul Hidayat

<p>In order to overcome stringent seismic requirement in the new Greater Jakarta Light Rail Transit Project, a breakthrough seismic system shall be chosen to obtain expected structural performance. This seismic system shall be designed to provide operational performance level after strong earthquake events. To achieve the criteria, seismic isolation system using Lead Rubber Bearings is chosen. With this isolation system, Greater Jakarta LRT has become the first seismically isolated infrastructure and apparently an infrastructure with the largest numbers of LRBs in one single project in Indonesia. More than 10.400 Pcs LRBs are used for the first phase of the construction and the numbers will be certainly increased in the next phase of the construction. To evaluate the structural performance, non-linear time history analysis is used. A total of 3 pair matched ground motions will be used as the input for the response history analysis. The ability of the lead rubber bearing to isolate and dissipate earthquake actions will determine its structural performance level. This will be represented by the nonlinear hysteretic curves obtained throughout the earthquake actions.</p>


2018 ◽  
Vol 195 ◽  
pp. 02013
Author(s):  
Santi Nuraini ◽  
Asdam Tambusay ◽  
Priyo Suprobo

Advanced nonlinear analysis in light rail transit (LRT) structures has been undertaken to examine the influence of seismic isolation devices for reducing seismic demand. The study employed the use of two types of commercially available bearings, namely lead rubber bearing (LRB) and friction pendulum system (FPS). Six LRT structures, designed to be built in Surabaya, were modelled using computer-aided software SAP2000, where each of the three structures consisted of three types of LRB and FPS placed onto the pier cap to support the horizontal upper-structural member. Nonlinear static pushover and dynamic time history analysis with seven improved ground motion data was performed to gain improved insights on the behavioural response of LRT structures, allowing one to fully understand the supremacy of seismic isolations for protecting the structure against seismic actions. It is shown that both devices manage to isolate seismic forces, resulting in alleviation of excessive base shear occurring at the column. In addition, it is noticeable that the overall responses of LRB and FPS shows marginal discrepancies, suggesting both devices are interchangeable to be used for LRT-like structures.


2016 ◽  
Vol 32 (2) ◽  
pp. 843-859 ◽  
Author(s):  
Cuiyan Kong ◽  
Mervyn J. Kowalsky

Damping scaling factors (DSFs) play an important role in direct displacement-based design (DDBD) as they provide a means to establish displacement response spectra for damping values beyond 5%. Response spectra for multiple damping values are needed for DDBD as the approach relies on equivalent linearization, expressed in the form of effective stiffness and equivalent viscous damping, to establish design forces for prescribed performance limit states. In the past, DSFs based on the Eurocode have been employed for DDBD; however, recent research has resulted in more robust DSF models. This paper examines the accuracy of the current DSF equation used in DDBD across the parameters that are important for structural design. A nonlinear regression analysis is performed based on the data obtained by the Rezaeian et al. (2014) model, and a base shear adjustment factor (SAF) is proposed for application to the DDBD base shear equation.


Sign in / Sign up

Export Citation Format

Share Document