scholarly journals The use of biotechnology in hop (Humulus lupulus L.) improvement

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Juraj Faragó ◽  
Ivana Pšenáková ◽  
Natália Faragová

Hop (Humulus lupulus L.) is a clonally propagated, dioecious, perennial, climbing plant used commercially for their secondary metabolites. The resins containing α- and β-acids, and essential oils produced by the lupulin glands, present on the female flowers are used to add bitterness, aroma and flavour to beer. Recently, flavonoids, including chalcones and flavanones, of hops have been shown to exert a variety of biological activities, including oestrogenic and anticancerogenic characteristics. In this review, we provide a overview of the techniques and opportunities presented by the integration of plant biotechnology into hop improvement. The use of tissue culture techniques such as micropropagation, meristem culture, in vitro storage, adventitious shoot induction, callus culture and cell suspension culture in hops are briefly reviewed. The usefullness of genetic transformation technology to introduce novel traits into hop is also discussed.

2013 ◽  
Vol 12 (2) ◽  
pp. 129-140
Author(s):  
Maria Maliarova ◽  
Tibor Maliar ◽  
Jana Girmanova ◽  
Jozef Lehotay ◽  
Jan Kraic

Abstract The Humulus lupulus L. is well known as necessary raw material for beer production. The main structural classes of chemical compounds identified from hop cones include terpenes, bitter acids, prenylated chalcones, and flavonol glycosides. They were subjects of presented work. The content of quercetin was found in the range 490 - 1092 μg/g and that of kaempferol from 218 to 568 μg/g of the dry hop cones. The content of isorhamnetin was very low in all varieties. From biological activities in vitro point of view, relative high level of inhibition activity was observed for six hop genotypes - Zlatan, Lučan, and the Oswald's clones 31, 70, 71, 72, 114 on both enzymes thrombin and urokinase, but without correlation to analyzed flavonols content. In spite of this, antioxidant activity, measured by both the BCLM and HPE methods, was found high and seem to be in correlation with content of analyzed flavonols. Particularly the Oswald's clone 114 expressed very potent biological activities. In general, obtained results indicate that hop cones are valuable material also for other application others than beer production.


2018 ◽  
pp. 47-52

Epimedium elatum (Morren & Decne) of family Berberidaceace is a rare perennial medicinal plant, endemic to high altitude forests of Northwestern Himalayas in India. Ethnobotanically, it has been used as an ingredient for treatment of bone-joint disorders, impotence and kidney disorders in Kashmir Himalayas. Phytochemically, it is rich in Epimedin ABC and Icariin; all of these have been demonstrated to possess remarkable biological activities like PDE-5 inhibition (treatment of erectile dysfunction), anticancer, antiosteoporosis antioxidant and antiviral properties. The present investigation reports its traditional usage, comprehensive distribution and conservation status from twenty ecogeographical regions in Kashmir Himalayas, India. The species was reported from Gurez valley for the first time. Numerous threats like excessive grazing, deforestration, habitat fragmentation, tourism encroachment, landslides and excessive exploitation have decreased its natural populations in most of the surveyed habitats. Consequently, its existence may become threatened in near future if timely conservation steps are not taken immediately by concerned stakeholders involved in medicinal plant research. Moreover, use of plant tissue culture techniques is recommended for development of its in vitro propagation protocols. Therefore, introduction of this medicinal plant in botanical gardens, protected sites and development of monitoring programmes are needed for its immediate conservation in Northwestern Himalayas, India.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


2020 ◽  
Vol 270 ◽  
pp. 109416 ◽  
Author(s):  
Claudia Maria Liberatore ◽  
Margherita Rodolfi ◽  
Deborah Beghè ◽  
Andrea Fabbri ◽  
Tommaso Ganino ◽  
...  

2019 ◽  
Vol 72 (2) ◽  
Author(s):  
Michaela Švécarová ◽  
Božena Navrátilová ◽  
Petr Hašler ◽  
Vladan Ondřej

The aim of the research was to establish an efficient procedure for in vitro micropropagation in order to obtain numbers of identical plants for in vitro polyploidization of <em>Humulus lupulus</em> (2<em>n</em> = 20), using antimicrotubule agent oryzalin. For this purpose, the polyploidization was carried out for <em>H. lupulus</em> Osvald’s clones 31, 74, 114, and for ‘Sladek’ cultivar. The two experimental methods – the cultivation of nodal segments on medium with different concentrations of oryzalin (1, 5, and 10 µM) for 2 weeks and the irrigation of nodal segments with oryzalin (10 and 20 µM) for 24 and 48 h were chosen for inducing for polyploid plantlets of <em>H. lupulus</em>. This procedure provided tetraploids, which were identified by flow cytometry using internal standardization method and confirmed using chromosome counting of methaphasic cells from the root tips and morphological observations. The influence of chromosome doubling was also verified with stomata characterization. The polyploid plants were propagated for next evaluation, rooting and transfer to nonsterile conditions and into field. After chromosome doubling, using some different concentration of oryzalin, some plantlets became tetraploids, no mixoploids were detected. The highest efficiency of polyploidization was achieved for clone 72 after 2-week treatment of oryzalin supplemented medium. On the other hand, for method based on the irrigation of nodal segments with oryzalin, the most efficient conditions were treatment with 10 µM and 20 µM oryzalin for 24 and 48 h, respectively.


2021 ◽  
Author(s):  
Priyanka Bijalwan ◽  
Shilpa .

In vitro culture of plant cells/tissues is now routine using a range of explant types from many of the important vegetable and fruit crops. Successful technologies include isolation, culture of tissues, cells, protoplasts, organs, embryos, ovules, anthers and microspores and regeneration from them of complete plantlets. The development of plant tissue culture technology represents one of the most exciting advances in plant sciences. For example, the prospect of being able to introduce, develop, produce, transfer and conserve the existing gene pool of plant sciences by using tissue culture methods opens up new opportunities for researches and entrepreneurs. The term plant tissue culture should denote in vitro cultivation of plant cells or tissues in an unorganized mass, i.e., callus culture. Plant tissue culture techniques, in combination with recombinant DNA technology, are the essential requirements for the development of transgenic plants. However, culture techniques like anther/pollen/ovule culture, meristem culture can themselves be utilized for crop improvement or may serve as an aid to conventional breeding. In recent, isolated microspore culture has developed as a breeding tool and an experimental system for various genetic manipulations. The inherent potentiality of a plant cell to give rise to a whole plant, a capacity which is often retained even after a cell has undergone final differentiation in the plant body, is described as ‘cellular totipotency’. On the other hand, production of virus-free plants via meristem culture can reduce losses caused by phyto-pathogens. Embryo culture has many potential uses ranging from overcoming seed dormancy to facilitation of inter-specific hybridization. Protoplast fusion technique can be used for the transfer of cytoplasmic male sterility from one species to another in a short period of time. In cabbage, male sterile cybrids are being utilized by seed companies to produce hybrid seeds on commercial scale and at competitive rates. Plant tissue culture and cell culture are providing useful methods for germplasm storage either by low temperature storage of organized tissue, or cryopreservation of cell or embryo culture.


Sign in / Sign up

Export Citation Format

Share Document