scholarly journals Secure Data Sharing Platform for Portable Social Networks with Power Saving Operation

2021 ◽  
Vol 3 (3) ◽  
pp. 250-262
Author(s):  
Jennifer S. Raj

Several subscribing and content sharing services are largely personalized with the growing use of mobile social media technology. The end user privacy in terms of social relationships, interests and identities as well as shared content confidentiality are some of the privacy concerns in such services. The content is provided with fine-grained access control with the help of attribute-based encryption (ABE) in existing work. Decryption of privacy preserving content suffers high consumption of energy and data leakage to unauthorized people is faced when mobile social networks share privacy preserving data. In the mobile social networks, a secure proxy decryption model with enhanced publishing and subscribing scheme is presented in this paper as a solution to the aforementioned issues. The user credentials and data confidentiality are protected by access control techniques that work on privacy preserving in a self-contained manner. Keyword search based public-key encryption with ciphertext policy attribute-based encryption is used in this model. At the end users, ciphertext decryption is performed to reduce the energy consumption by the secure proxy decryption scheme. The effectiveness and efficiency of the privacy preservation model is observed from the experimental results.

Cryptography ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 28
Author(s):  
Yunhong Zhou ◽  
Shihui Zheng ◽  
Licheng Wang

In the area of searchable encryption, public key encryption with keyword search (PEKS) has been a critically important and promising technique which provides secure search over encrypted data in cloud computing. PEKS can protect user data privacy without affecting the usage of the data stored in the untrusted cloud server environment. However, most of the existing PEKS schemes concentrate on data users’ rich search functionalities, regardless of their search permission. Attribute-based encryption technology is a good method to solve the security issues, which provides fine-grained access control to the encrypted data. In this paper, we propose a privacy-preserving and efficient public key encryption with keyword search scheme by using the ciphertext-policy attribute-based encryption (CP-ABE) technique to support both fine-grained access control and keyword search over encrypted data simultaneously. We formalize the security definition, and prove that our scheme achieves selective indistinguishability security against an adaptive chosen keyword attack. Finally, we present the performance analysis in terms of theoretical analysis and experimental analysis, and demonstrate the efficiency of our scheme.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3994
Author(s):  
Yuxi Li ◽  
Fucai Zhou ◽  
Yue Ge ◽  
Zifeng Xu

Focusing on the diversified demands of location privacy in mobile social networks (MSNs), we propose a privacy-enhancing k-nearest neighbors search scheme over MSNs. First, we construct a dual-server architecture that incorporates location privacy and fine-grained access control. Under the above architecture, we design a lightweight location encryption algorithm to achieve a minimal cost to the user. We also propose a location re-encryption protocol and an encrypted location search protocol based on secure multi-party computation and homomorphic encryption mechanism, which achieve accurate and secure k-nearest friends retrieval. Moreover, to satisfy fine-grained access control requirements, we propose a dynamic friends management mechanism based on public-key broadcast encryption. It enables users to grant/revoke others’ search right without updating their friends’ keys, realizing constant-time authentication. Security analysis shows that the proposed scheme satisfies adaptive L-semantic security and revocation security under a random oracle model. In terms of performance, compared with the related works with single server architecture, the proposed scheme reduces the leakage of the location information, search pattern and the user–server communication cost. Our results show that a decentralized and end-to-end encrypted k-nearest neighbors search over MSNs is not only possible in theory, but also feasible in real-world MSNs collaboration deployment with resource-constrained mobile devices and highly iterative location update demands.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Randa Aljably ◽  
Yuan Tian ◽  
Mznah Al-Rodhaan

Nowadays, user’s privacy is a critical matter in multimedia social networks. However, traditional machine learning anomaly detection techniques that rely on user’s log files and behavioral patterns are not sufficient to preserve it. Hence, the social network security should have multiple security measures to take into account additional information to protect user’s data. More precisely, access control models could complement machine learning algorithms in the process of privacy preservation. The models could use further information derived from the user’s profiles to detect anomalous users. In this paper, we implement a privacy preservation algorithm that incorporates supervised and unsupervised machine learning anomaly detection techniques with access control models. Due to the rich and fine-grained policies, our control model continuously updates the list of attributes used to classify users. It has been successfully tested on real datasets, with over 95% accuracy using Bayesian classifier, and 95.53% on receiver operating characteristic curve using deep neural networks and long short-term memory recurrent neural network classifiers. Experimental results show that this approach outperforms other detection techniques such as support vector machine, isolation forest, principal component analysis, and Kolmogorov–Smirnov test.


Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

AbstractCountless data generated in Smart city may contain private and sensitive information and should be protected from unauthorized users. The data can be encrypted by Attribute-based encryption (CP-ABE), which allows encrypter to specify access policies in the ciphertext. But, traditional CP-ABE schemes are limited because of two shortages: the access policy is public i.e., privacy exposed; the decryption time is linear with the complexity of policy, i.e., huge computational overheads. In this work, we introduce a novel method to protect the privacy of CP-ABE scheme by keyword search (KS) techniques. In detail, we define a new security model called chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and hidden. If user's attributes don't satisfy the public policy, he/she cannot get any information (attribute name and its values) of the hidden one. Previous CP-ABE schemes with hidden policy only work on the “AND-gate” access structure or their ciphertext size or decryption time maybe super-polynomial. Our scheme is more expressive and compact. Since, IoT devices spread all over the smart city, so the computational overhead of encryption and decryption can be shifted to third parties. Therefore, our scheme is more applicable to resource-constrained users. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.


2012 ◽  
Vol 61 (7) ◽  
pp. 3209-3222 ◽  
Author(s):  
Xiaohui Liang ◽  
Xu Li ◽  
Tom H. Luan ◽  
Rongxing Lu ◽  
Xiaodong Lin ◽  
...  

Author(s):  
Alfredo Cuzzocrea ◽  
Vincenzo Russo

The problem of ensuring the privacy and security of OLAP data cubes (Gray et al., 1997) arises in several fields ranging from advanced Data Warehousing (DW) and Business Intelligence (BI) systems to sophisticated Data Mining (DM) tools. In DW and BI systems, decision making analysts aim at avoiding that malicious users access perceptive ranges of multidimensional data in order to infer sensitive knowledge, or attack corporate data cubes via violating user rules, grants and revokes. In DM tools, domain experts aim at avoiding that malicious users infer critical-for-thetask knowledge from authoritative DM results such as frequent item sets, patterns and regularities, clusters, and discovered association rules. In more detail, the former application scenario (i.e., DW and BI systems) deals with both the privacy preservation and the security of data cubes, whereas the latter one (i.e., DM tools) deals with privacy preserving OLAP issues solely. With respect to security issues, although security aspects of information systems include a plethora of topics ranging from cryptography to access control and secure digital signature, in our work we particularly focus on access control techniques for data cubes, and remand the reader to the active literature for the other orthogonal matters. Specifically, privacy preservation of data cubes refers to the problem of ensuring the privacy of data cube cells (and, in turn, that of queries defined over collections of data cube cells), i.e. hiding sensitive information and knowledge during data management activities, according to the general guidelines drawn by Sweeney in her seminar paper (Sweeney, 2002), whereas access control issues refer to the problem of ensuring the security of data cube cells, i.e. restricting the access of unauthorized users to specific sub-domains of the target data cube, according to well-known concepts studied and assessed in the context of DBMS security. Nonetheless, it is quite straightforward foreseeing that these two even distinct aspects should be meaningfully integrated in order to ensure both the privacy and security of complex data cubes, i.e. data cubes built on top of complex data/knowledge bases. During last years, these topics have became of great interest for the Data Warehousing and Databases research communities, due to their exciting theoretical challenges as well as their relevance and practical impact in modern real-life OLAP systems and applications. On a more conceptual plane, theoretical aspects are mainly devoted to study how probability and statistics schemes as well as rule-based models can be applied in order to efficiently solve the above-introduced problems. On a more practical plane, researchers and practitioners aim at integrating convenient privacy preserving and security solutions within the core layers of commercial OLAP server platforms. Basically, to tackle deriving privacy preservation challenges in OLAP, researchers have proposed models and algorithms that can be roughly classified within two main classes: restriction-based techniques, and data perturbation techniques. First ones propose limiting the number of query kinds that can be posed against the target OLAP server. Second ones propose perturbing data cells by means of random noise at various levels, ranging from schemas to queries. On the other hand, access control solutions in OLAP are mainly inspired by the wide literature developed in the context of controlling accesses to DBMS, and try to adapt such schemes in order to control accesses to OLAP systems.


Sign in / Sign up

Export Citation Format

Share Document