scholarly journals Novel Routing Algorithm for Autonomous Vehicles in Smart Transportation System

Author(s):  
Haoxiang Wang

In recent times Automation is emerging every day and bloomed in every sector. Intelligent Transportation System (ITS) is one of the important branches of Automation. The major constrain in the transportation system is traffic congestion. This slurps the individual’s time and consequently pollutes the environment. A centralized management is required for optimizing the transportation system. The current traffic condition is predicted by evaluating the historical data and thereby it reduces the traffic congestion. The periodic update of traffic condition in each and every street of the city is obtained and the data is transferred to the autonomous vehicle. These data are obtained from the simulation results of transportation prediction tool SUMO. It is proved that our proposed work reduces the traffic congestion and maintains ease traffic flow and preserves the fleet management.

2019 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Ehsan Sabri Islam ◽  
Ayman Moawad ◽  
Namdoo Kim ◽  
Aymeric Rousseau

Transportation system simulation is a widely accepted approach to evaluate the impact of transport policy deployment. In developing a transportation system deployment model, the energy impact of the model is extremely valuable for sustainability and validation. It is expected that different penetration levels of Connected-Autonomous Vehicles (CAVs) will impact travel behavior due to changes in potential factors such as congestion, miles traveled, etc. Along with such impact analyses, it is also important to further quantify the regional energy impact of CAV deployment under different factors of interest. The objective of this paper is to study the energy consumption of electrified vehicles in the future for different penetration levels of CAVs deployment in the City of Chicago. The paper will further provide a statistical analysis of the results to evaluate the impact of the different penetration levels on the different electrified powertrains used in the study.


2013 ◽  
Vol 385-386 ◽  
pp. 877-881
Author(s):  
Hao Yu Wang ◽  
Chao Jun Ji ◽  
Xiao Juan Ji

Intelligent transportation system (ITS) is a complicated system, and selecting the shortest path is the core of the system. In order to ease traffic congestion of the city, through solving the shortest path, the key technology in realizing the function of ITS, and based on the analysis of traditional Dijkstra algorithm, the paper puts forward the improved algorithm. The new algorithm includes two parts, that is, preprocessing and real-time pruning research, and the effect of pruning totally depends on the division of specific diagram.


2018 ◽  
Vol 220 ◽  
pp. 02004 ◽  
Author(s):  
Anton Agafonov ◽  
Aleksandr Borodinov

Autonomous vehicle development is one of many trends that will affect future transport demands and planning needs. Autonomous vehicles management in the context of an intelligent transportation system could significantly reduce the traffic congestion level and decrease the overall travel time in a network. In this work, we investigate a route reservation architecture to manage road traffic within an urban area. The routing architecture decomposes road segments into time and spatial slots and for every vehicle, it makes the reservation of the appropriate slots on the road segments in the selected route. This approach allows to predict the traffic in the network and to find the shortest path more precisely. We propose to use a rerouting procedure to improve the quality of the routing approach. Experimental study of the routing architecture is conducted using microscopic traffic simulation in SUMO package.


2021 ◽  
Vol 11 (4) ◽  
pp. 1514 ◽  
Author(s):  
Quang-Duy Tran ◽  
Sang-Hoon Bae

To reduce the impact of congestion, it is necessary to improve our overall understanding of the influence of the autonomous vehicle. Recently, deep reinforcement learning has become an effective means of solving complex control tasks. Accordingly, we show an advanced deep reinforcement learning that investigates how the leading autonomous vehicles affect the urban network under a mixed-traffic environment. We also suggest a set of hyperparameters for achieving better performance. Firstly, we feed a set of hyperparameters into our deep reinforcement learning agents. Secondly, we investigate the leading autonomous vehicle experiment in the urban network with different autonomous vehicle penetration rates. Thirdly, the advantage of leading autonomous vehicles is evaluated using entire manual vehicle and leading manual vehicle experiments. Finally, the proximal policy optimization with a clipped objective is compared to the proximal policy optimization with an adaptive Kullback–Leibler penalty to verify the superiority of the proposed hyperparameter. We demonstrate that full automation traffic increased the average speed 1.27 times greater compared with the entire manual vehicle experiment. Our proposed method becomes significantly more effective at a higher autonomous vehicle penetration rate. Furthermore, the leading autonomous vehicles could help to mitigate traffic congestion.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3928 ◽  
Author(s):  
Weisong Wen ◽  
Li-Ta Hsu ◽  
Guohao Zhang

Robust and lane-level positioning is essential for autonomous vehicles. As an irreplaceable sensor, Light detection and ranging (LiDAR) can provide continuous and high-frequency pose estimation by means of mapping, on condition that enough environment features are available. The error of mapping can accumulate over time. Therefore, LiDAR is usually integrated with other sensors. In diverse urban scenarios, the environment feature availability relies heavily on the traffic (moving and static objects) and the degree of urbanization. Common LiDAR-based simultaneous localization and mapping (SLAM) demonstrations tend to be studied in light traffic and less urbanized area. However, its performance can be severely challenged in deep urbanized cities, such as Hong Kong, Tokyo, and New York with dense traffic and tall buildings. This paper proposes to analyze the performance of standalone NDT-based graph SLAM and its reliability estimation in diverse urban scenarios to further evaluate the relationship between the performance of LiDAR-based SLAM and scenario conditions. The normal distribution transform (NDT) is employed to calculate the transformation between frames of point clouds. Then, the LiDAR odometry is performed based on the calculated continuous transformation. The state-of-the-art graph-based optimization is used to integrate the LiDAR odometry measurements to implement optimization. The 3D building models are generated and the definition of the degree of urbanization based on Skyplot is proposed. Experiments are implemented in different scenarios with different degrees of urbanization and traffic conditions. The results show that the performance of the LiDAR-based SLAM using NDT is strongly related to the traffic condition and degree of urbanization. The best performance is achieved in the sparse area with normal traffic and the worse performance is obtained in dense urban area with 3D positioning error (summation of horizontal and vertical) gradients of 0.024 m/s and 0.189 m/s, respectively. The analyzed results can be a comprehensive benchmark for evaluating the performance of standalone NDT-based graph SLAM in diverse scenarios which is significant for multi-sensor fusion of autonomous vehicle.


Author(s):  
Jooin Lee ◽  
Hyeongcheol Lee

Intelligent Transportation System (ITS) is actively studied as the sensor and communication technology in the vehicle develops. The Intelligent Transportation System collects, processes, and provides information on the location, speed, and acceleration of the vehicles in the intersection. This paper proposes a fuel optimal route decision algorithm. The algorithm estimates traffic condition using information of vehicles acquired from several ITS intersections and determines the route that minimizes fuel consumption by reflecting the estimated traffic condition. Simplified fuel consumption models and road information (speed limit, average speed, etc.) are used to estimate the amount of fuel consumed when passing through the road. Dynamic Programming (DP) is used to determine the route that fuel consumption can be minimized. This algorithm has been verified in an intersection traffic model that reflects the actual traffic environment (Korea Daegu Technopolis) and the corresponding traffic model is modeled using AIMSUN.


2018 ◽  
Vol 882 ◽  
pp. 90-95 ◽  
Author(s):  
Michael Scholz ◽  
Xu Zhang ◽  
Jörg Franke

The paper presents an intralogistics routing-service for autonomous and versatile transport vehicles. An infrastructural sensor digitize the workspace of the vehicle and is the basis for the vehicle-specific routing plan. Nowadays, a central computing unit allocates transportation task to a known number of automated guided vehicles, which are usually of the same type. Furthermore, this device generates a routing appropriate to the dimensions and the kinematic gauge of the vehicle fleet. The pathing for each specific vehicle is calculated and the result is send to the different entities. The approach of this paper bases on the digitization of the workspace with a ceiling camera, which divides the scenery into moving obstacles and an adaptive background picture. A central computing unit receives the background picture of several cameras and stitch them together to an overview of the entire workspace, e.g. a production hall. Furthermore, the approach includes the development of automated guided vehicles to versatile autonomous vehicles, were each entity is able to calculate the pathing on a given routing plan. A fleet of versatile autonomous vehicles consists of vehicles with task-specific dimensions and kinematic gauges. Therefore, each vehicle needs its own routing-plan. The solution is that each vehicles uses a vehicle parameter-server and register itself with these parameters at the routing unit. This unit is calculating a routing-plan for each specific vehicle dimension and gauge and providing it. When getting a new task, the vehicles uses this routing-plan to do the pathing. The routing-algorithm is implemented inside the service-layer of the versatile autonomous vehicle system. This approach lowers the amount of data, which is send between the service layer and the transportation entities by reducing the information of the workspace to the possible routes of each specific vehicle. Furthermore, the calculation time for routing and pathing is lowered, because each vehicle is calculating its task-specific path, but the route-map is calculated once for each vehicle-type by the routing-service.


2013 ◽  
Vol 23 (1) ◽  
pp. 183-200 ◽  
Author(s):  
Fei Yan ◽  
Mahjoub Dridi ◽  
Abdellah El Moudni

This paper addresses a vehicle sequencing problem for adjacent intersections under the framework of Autonomous Intersection Management (AIM). In the context of AIM, autonomous vehicles are considered to be independent individuals and the traffic control aims at deciding on an efficient vehicle passing sequence. Since there are considerable vehicle passing combinations, how to find an efficient vehicle passing sequence in a short time becomes a big challenge, especially for more than one intersection. In this paper, we present a technique for combining certain vehicles into some basic groups with reference to some properties discussed in our earlier works. A genetic algorithm based on these basic groups is designed to find an optimal or a near-optimal vehicle passing sequence for each intersection. Computational experiments verify that the proposed genetic algorithms can response quickly for several intersections. Simulations with continuous vehicles are carried out with application of the proposed algorithm or existing traffic control methods. The results show that the traffic condition can be significantly improved by our algorithm.


Sign in / Sign up

Export Citation Format

Share Document