Fuel-optimal path finding algorithm using traffic information at urban intersection

Author(s):  
Jooin Lee ◽  
Hyeongcheol Lee

Intelligent Transportation System (ITS) is actively studied as the sensor and communication technology in the vehicle develops. The Intelligent Transportation System collects, processes, and provides information on the location, speed, and acceleration of the vehicles in the intersection. This paper proposes a fuel optimal route decision algorithm. The algorithm estimates traffic condition using information of vehicles acquired from several ITS intersections and determines the route that minimizes fuel consumption by reflecting the estimated traffic condition. Simplified fuel consumption models and road information (speed limit, average speed, etc.) are used to estimate the amount of fuel consumed when passing through the road. Dynamic Programming (DP) is used to determine the route that fuel consumption can be minimized. This algorithm has been verified in an intersection traffic model that reflects the actual traffic environment (Korea Daegu Technopolis) and the corresponding traffic model is modeled using AIMSUN.

2021 ◽  
Vol 2083 (3) ◽  
pp. 032022
Author(s):  
Yunpeng Guo ◽  
Kai Zou ◽  
Shengdong Chen ◽  
Feng Yuan ◽  
Fang Yu

Abstract Cooperative vehicle-infrastructure is one of the most import developing direction of future intelligent transportation system, while digital twin system can record, reproduce, and even deduce the physical system, which could be helpful for the development of cooperative vehicle-infrastructure. In this study, we proposed a 3D digital twin platform of intelligent transportation system based on road-side sensing, a core component of cooperative vehicle-infrastructure system. This platform consists of real road-side sensing unit,3D virtual environment, and the ROS bridge between them, by receiving the sensing results of physical world in real-time, the virtual world can reproduce the compatible road traffic information, such as the type,3D position and orientation of traffic participants.


2013 ◽  
Vol 671-674 ◽  
pp. 2855-2859
Author(s):  
Jun Wu ◽  
Luo Zhong

Intelligent Transportation System is a new kind of complicated information system which includes many different wireless sensors. With the development in sensor technologies and their applications, it is important to focus on how to find the useful and real-time traffic information from the Intelligent Transportation System. Using this method of building dynamical data system model for the Intelligent Transportation System is the way to solve the data aggregation problem and minimize the number of the multi-sources data.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
P. Ganeshkumar ◽  
P. Gokulakrishnan

In Indian four-lane express highway, millions of vehicles are travelling every day. Accidents are unfortunate and frequently occurring in these highways causing deaths, increase in death toll, and damage to infrastructure. A mechanism is required to avoid such road accidents at the maximum to reduce the death toll. An Emergency Situation Prediction Mechanism, a novel and proactive approach, is proposed in this paper for achieving the best of Intelligent Transportation System using Vehicular Ad Hoc Network. ESPM intends to predict the possibility of occurrence of an accident in an Indian four-lane express highway. In ESPM, the emergency situation prediction is done by the Road Side Unit based on (i) the Status Report sent by the vehicles in the range of RSU and (ii) the road traffic flow analysis done by the RSU. Once the emergency situation or accident is predicted in advance, an Emergency Warning Message is constructed and disseminated to all vehicles in the area of RSU to alert and prevent the vehicles from accidents. ESPM performs well in emergency situation prediction in advance to the occurrence of an accident. ESPM predicts the emergency situation within 0.20 seconds which is comparatively less than the statistical value. The prediction accuracy of ESPM against vehicle density is found better in different traffic scenarios.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Mikhail Buinevich ◽  
Andrei Vladyko

During the last decade there has been an essential development of wireless communication technologies for intelligent transportation system (ITS) applications for motor transport; these advanced infocommunication technologies are called vehicular ad hoc networks (VANET). VANET/ITS, in particular, inform and warn drivers about possible obstacles, and also the possibility of how to organize coordinated actions. Therefore, any violation of its functioning by cyber attacks automatically influences the safety of people and automotive engineering on the road. The purpose of this article is to provide an analytical overview of cyber attacks on VANET/ITS, presented in state-of-the-art publications on this topic by the prediction of its cyber resistance. We start with an analysis of the top 10 cyber threats, considered according to the following schemes: attack mechanism, vulnerability, damage, object of attack, and a counter measure. We then set out a synergistic approach for assessing the cyber resistance of the forward-looking VANET/ITS conceptual model, formed by the merger of the internet of vehicles and software-defined networking technology. Finally, we identify open issues and associated research opportunities, the main ones being the formalization of threats, vulnerability stratification, the choice of the level of network management centralization and, last but not least, the modeling and prediction of VANET/ITS cyber resistance.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhihui Hu ◽  
Hai Tang

With the improvement of urbanization and the continuous expansion of transportation scale, traffic problem has become an important problem in our life. How to ensure traffic safety has become the key issue for the government to implement social management. Nowadays, Internet of Things (IOT) technology is widely used in the industrial technology field. It will have a great impact on human production and life. Intelligent transportation system is a research field involving many high and new technologies. This paper proposes an intelligent transportation system based on Internet of Things technology. This paper presents the optimal design structure of intelligent transportation system based on Internet of Things technology. The experimental results show that the intelligent transportation system can effectively realize the information interaction between the vehicle and the control center and understand the road conditions in advance. At the same time, the intelligent transportation system can improve the driving speed of vehicles on the road, make effective use of resources, reduce economic losses during vehicle operation, and reduce air pollution caused by gasoline emission.


2019 ◽  
Vol 259 ◽  
pp. 02009 ◽  
Author(s):  
Noussaiba Melaouene ◽  
Rahal Romadi

For the last fifty years, finding efficient vehicle routes has been studied as a representative logistics problem. In the transportation field, finding the shortest path in a road network is a common problem. VANET presents an innovation opportunity in the transportation field that enables services for intelligent transportation system (ITS) especially communication features. Because of VANET features [1] and despite road obstacles, a route for the shortest path can be established at a given moment. This paper proposes an enhanced algorithm, based on ACO Ant Colony Optimization and related to VANET infrastructure that aims to find the shortest path from the source to destination through the optimal path; in addition, a storage on static nodes is installed in each intersection in a VANET environment and for a specific time.


2014 ◽  
Vol 926-930 ◽  
pp. 3228-3231
Author(s):  
Dong Wang ◽  
Jiang Wu

The article provides an overview of integration in the field of Internet technology and its trend, combined with the successful application of intelligent transportation system case system provides next - generation model of intelligent transportation system based on Internet of Things, details the functions and features of each subsystem, a case study of typical traffic guidance applications, describes the model and key technology of the Internet of its implementation.


Sign in / Sign up

Export Citation Format

Share Document