Effect of scandium alloying of filling wire on properties of welded joints of high-strength aluminum alloys

Author(s):  
V.V. Ovchinnikov ◽  
R.N. Rastopchin ◽  
L.P. Andreeva

The results of the effect of scandium alloying of additive wires such as SvАМg4 and SvАМg63 on the structure and mechanical properties of welded joints of sheets and plates of 1420 alloy in mechanized single-passing and manual multi-pass welding are presented. It is shown that the introduction of 0.17...0.25 % scandium in the SvАМg4 and SvАМg63 filling wires contributes to decrease in the cracking rate and significant increase in the critical rate of deformation of the sample during welding on the МVТU sample. The level of microporosities and their location in multi-pass welding of plates of 1420 alloy depend on the magnesium content in the filling wire. The alloying of the SvАМg4 and SvАМg63 filling wires by scandium increases the ultimate strength of both the welding joint as whole and the weld metal.

2014 ◽  
Vol 925 ◽  
pp. 253-257 ◽  
Author(s):  
Haider T. Naeem ◽  
Kahtan S. Mohammad ◽  
Khairel R. Ahmad

High strength aluminum alloys Al-Zn-Mg-Cu-(0.1) Ni produced by semi-direct chill casting process were homogenized at different conditions then conducted heat treatment process which comprised pre-aging at 120°C for 24 h, retrogression at 180°C for 30 min, and then re-aging at 120°C for 24 h. Microstructural studies showed that add Ni (0.1 wt %) to the alloy will be forming Ni-rich phases such as AlCuNi, AlNi, AlNiFe and AlMgNi which provide a dispersive strengthening affected in the solid-solution and the subsequent heat treatments. The results showed that by this three-step process of heat treatments, the mechanical properties of aluminum alloys Al-Zn-Mg-Cu-(0.1) Ni were substantially improved. The highest attain for the ultimate tensile strength and Vickers hardness for the alloy sample after applied the retrogression and reaging process is about 545 MPa and 237 HV respectively.


2020 ◽  
Vol 110 (10) ◽  
pp. 697-703
Author(s):  
Janosch Günzel ◽  
Timon Suckow ◽  
Ciarán-Victor Veitenheimer ◽  
Joachim Hauß ◽  
Peter Groche

Aufgrund ihrer geringen Kaltumformbarkeit werden hochfeste Aluminiumlegierungen in temperaturunterstützten Prozessrouten umgeformt. Bei mehrstufigen Prozessen führt dies zu komplexen und störanfälligen Prozessfolgen. Eine Umformung im W-Temper-Zustand vereinfacht die Temperaturführung und steigert die Robustheit. Die hierbei möglichen Prozessführungen sowie die Einflüsse der relevanten Prozessparameter (Zeit und Abschreckmethode) sind Inhalt dieses Beitrags.   Due to their low cold formability, high-strength aluminum alloys are formed in temperature-supported process routes. This leads to complex and failure-prone process sequences in multi-stage processes. Forming in the W-Temper state simplifies temperature control and increases robustness. This paper deals with the possible process control as well as the influences of the relevant process parameters (time and quenching method).


2015 ◽  
Vol 220-221 ◽  
pp. 583-588 ◽  
Author(s):  
Krzysztof Dudzik ◽  
Mirosław Czechowski

The paper presents the research results on the mechanical properties of aluminum alloy 7020 and its FSW and MIG welded joints. For comparison, alloy 5083 – the most currently used in shipbuilding alloy was chosen as well as 5059 – the new high-strength alloy. Besides, the native material alloys there were investigated their joints welded by FSW and MIG – the same methods as alloy 7020. Welding parameters used for the connection of the sheets made of 7020, 5083 and 5059 alloys were presented. Metallographic analysis showed the correct construction of structural bonded joints.Friction Stir Welding (FSW) – a new technology can be successfully used for butt welding of different types of aluminum alloy sheets. FSW method can be an alternative to traditional arc welding methods, especially MIG, which is the most common method of joining aluminum alloys used in shipbuilding. The research was carried out using a static tensile test in accordance with the requirements of the Polish Standards PN-EN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Flat samples cut perpendicular to the direction of rolling were used. The research was conducted at the temperature of +20 oC.Friction stir welded joints of tested alloys have higher strength properties as compared to MIG welded joints. The 7020 alloy has higher strength properties then alloys 5083 and 5059. The yield stress is higher by 14.8% as compared to alloy 5083, and by 11.7% as compared to the alloy 5059. Plastic properties of alloy 7020 are the lowest, but with reserves meet the requirements of classification societies. The joints welded by FSW of alloy 7020 have the highest strength properties of all researched joints – higher then alloys 5083 and 5059 joints welded by FSW and joints of all alloys welded by MIG.


2019 ◽  
Vol 969 ◽  
pp. 546-551
Author(s):  
J. Suresh Kumar ◽  
M. Siva ◽  
N. Suneel Kumar ◽  
CH.V.V.S.S.R Krishna Murthy ◽  
V.V. Ravi Kumar

High strength aluminum alloys will enhancing mechanical properties always plays a major role in controlling microstructure of cast and processed alloy. The desire for more efficient aircraft materials has fueled research of aluminum AA-2xxx and AA7xxx alloys. In these alloys were rolled at cold rolling and at cryorolling to 80 % thickness reductions and an attempt was made to evaluate the optical-microstructural variation and the variation in tensile properties of these aluminum alloys. Cryorolled alloy also exhibited better hardness and strength compared to cold alloy due to suppressed thermal recovery. Coldrolled alloy showed more necking percentage compared to cryorolled for rolling reductions of 80% and more formability was observed.


Sign in / Sign up

Export Citation Format

Share Document