scholarly journals Advanced control methods for cross-flow turbines

2018 ◽  
Vol 1 (2 (Nov)) ◽  
pp. 129-138 ◽  
Author(s):  
B. Strom ◽  
S. L. Brunton ◽  
B. Polagye

Cross-flow turbines have a number of potential advantages for hydrokinetic energy applications. Two novel control schemes for improving cross-flow turbine energy conversion are introduced and demonstrated through scale experiments. The first aims to alter the local flow conditions on the blades through varying blade kinematics as a function of rotational position, thus increasing beneficial fluid forcing. An established method accomplishes this by oscillating the mounting angle of the blade. Instead we proposed to vary the angular velocity of the blade as a function of azimuthal position. Optimizing this controller resulted in a 59% increase in turbine performance over standard controllers. The second control scheme operates an array of two turbines in a coordinated manner to take advantage of periodic wake structures. For a range of relative turbine positions, a parent controller maintains a constant blade position difference between turbines with the same angular velocity. For select positions, the array efficiency is shown to be greater than that of a single turbine. At the optimal position, coordinated control results in a 4% increase in array performance over uncoordinated operation. Finally, intracycle angular velocity and coordinated control schema are combined.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 518
Author(s):  
Xiangwu Yan ◽  
Linlin Yang ◽  
Tiecheng Li

With the increasing penetration level of wind turbine generators (WTGs) integrated into the power system, the WTGs are enforced to aid network and fulfill the low voltage ride through (LVRT) requirements during faults. To enhance LVRT capability of permanent magnet synchronous generator (PMSG)-based WTG connected to the grid, this paper presents a novel coordinated control scheme named overspeed-while-storing control for PMSG-based WTG. The proposed control scheme purely regulates the rotor speed to reduce the input power of the machine-side converter (MSC) during slight voltage sags. Contrarily, when the severe voltage sag occurs, the coordinated control scheme sets the rotor speed at the upper-limit to decrease the input power of the MSC at the greatest extent, while the surplus power is absorbed by the supercapacitor energy storage (SCES) so as to reduce its maximum capacity. Moreover, the specific capacity configuration scheme of SCES is detailed in this paper. The effectiveness of the overspeed-while-storing control in enhancing the LVRT capability is validated under different levels of voltage sags and different fault types in MATLAB/Simulink.


Author(s):  
Michael Puopolo ◽  
J. D. Jacob

A mathematical model is developed for a rolling robot with a cylindrically-shaped, elliptical outer surface that has the ability to alter its shape as it rolls, resulting in a torque imbalance that accelerates or decelerates the robot. A control scheme is implemented, whereby angular position and angular velocity are used as feedback to trigger and define morphing actuation. The goal of the control is to direct the robot to follow a given angular velocity profile. Equations of motion for the rolling robot are formulated and solved numerically. Results show that by automatically morphing its shape in a periodic fashion, the rolling robot is able to start from rest, achieve constant average velocity and slow itself in order to follow a desired velocity profile with significant accuracy.


1998 ◽  
Vol 46 (536) ◽  
pp. 512-518
Author(s):  
Shigemune TANIWAKI ◽  
Saburo MATUNAGA ◽  
Yoshiaki OHKAMI

Sign in / Sign up

Export Citation Format

Share Document