Pengaruh penambahan natural rubber (NR), epoxidation natural rubber (ENR-46) dan chlorprene rubber (CR) pada sifat kompon termoplastik

2020 ◽  
Vol 26 (2) ◽  
pp. 62-69
Author(s):  
Farida Ali ◽  
Tuti I. Sari ◽  
Andi A. Siahaan ◽  
Al-Kautsar D. Arya ◽  
Tri Susanto

Penelitian ini untuk mengetahui pengaruh penambahan Natural Rubber (NR) dan Epoxidation Natural Rubber (ENR-46) dengan kompatibiliser Chlorprene Rubber (CR) pada aplikasi kompon termoplastik Poly Vinyl Chloride (PVC) dan Nitrile Butadiene Rubber (NBR), variabel penelitian meliputi ENR-46/PVC/NBR/CR, NR/PVC/NBR/CR dan CR-NR/PVC/NBR, CR-ENR-46/PVC/NBR. Parameter pengujian sifat fisik-mekanik : Hardness (Shore A), Tensile Strength (Mpa), Elongation at Break (%) dan ketahanan terhadap pelarut minyak (n-Pentane, Toluene, Hexane dan Pertalite). Hasil penelitian didapatkan untuk sifat fisik-mekanik, semakin banyak penambahan NR Kekerasan kompon termoplastik akan menurun, Tensile Strength dan Elongation at Break kompon akan meningkat begitu juga dengan CR-NR. Tetapi berbanding terbalik hasilnya untuk ENR-46 dan CR-ENR-46. Pengujian Ketahanan terhadap pelarut minyak semakin banyak penambahan ENR-46 Ketahanan kompon termoplastik terhadap pelarut akan meningkat, hasil yang sama juga pada CR-ENR-46. Tetapi berbanding terbalik hasilnya dengan penambahan NR dan CR-NR pada kompon termoplastik.

2018 ◽  
Vol 36 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Sunil S Suresh ◽  
Smita Mohanty ◽  
Sanjay K Nayak

The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.


2019 ◽  
Vol 9 ◽  
pp. 184798041985584 ◽  
Author(s):  
Mohammadhossein Saberian ◽  
Faramarz Ashenai Ghasemi ◽  
Ismail Ghasemi ◽  
Sajjad Daneshpayeh

In this study, the response surface methodology was used to investigate the tensile properties of epoxy/graphene nano-platelets/carboxylated nitrile butadiene rubber ternary nanocomposites. Box–Benhken method was used to design experiments for four factors consisting of graphene nano-platelets (at 0, 0.75, and 1.5 wt%), carboxylated nitrile butadiene rubber (0, 5, and 10 wt%), hardener contents (80, 90, and 100 phr), and also different post curing temperature (130, 140, and 150°C). After the samples were prepared, a tensile test was performed to obtain the tensile strength, tensile modulus, and elongation at break of nanocomposites. Moreover, field-emission scanning electron microscopy was used to observe the state of graphene nano-platelets dispersion. The results obtained from the tensile tests showed that increasing the graphene nano-platelets, carboxylated nitrile butadiene rubber, and hardener contents and high post curing temperature reduced the tensile strength. The optimum value of tensile modulus was achieved at low concentration of carboxylated nitrile butadiene rubber and high contents of graphene nano-platelets, whereas maximum elongation at break occurred at high content of carboxylated nitrile butadiene rubber and low concentration of graphene nano-platelets and hardener. In addition, a second-order polynomial model was used to correlate the tensile properties of ternary nanocomposites to the desired factors. Finally, contour plots were used to determine optimum values of the desired factors. It was seen that the presence of 10 wt% of carboxylated nitrile butadiene rubber in the epoxy matrix increased the elongation at break by the considerable amount of ∼49%.


2014 ◽  
Vol 534 ◽  
pp. 25-30 ◽  
Author(s):  
Nawadon Petchwattana ◽  
Sirijutaratana Covavisaruch ◽  
Chanidapa Watkrut

The purpose of this research is to enhance the toughness of richly-filled wood plastic composites (WPC) by using ultrafine acrylonitrile butadiene rubber (NBR) particles. The WPC was prepared by using poly (vinyl chloride) (PVC) matrix filled with Iron wood (Xylia xylocarpa) flour at 40 phr (WPC40) and 60 phr (WPC60). To enhance the impact strength, various contents of the ultrafine NBR were incorporated as an impact modifier from 1-11 phr. Experimental results indicated that the NBR toughened-WPCs were tougher than that of the unmodified ones, by increasing the tensile elongation at break. The impact strength of the WPCs modified with only 5 phr of NBR was notably enhanced around 26 and 7% for WPC40 and WPC60 respectively. Rheological results revealed that the ultrafine NBR functioned not only as an impact modifier but also as a processing aid with shorter processing time and lower melt torque.


Sign in / Sign up

Export Citation Format

Share Document