scholarly journals ACCUMULATION AND DISTRIBUTION OF OXYTETRACYCLINE AND CHLORTETRACYCLINE IN TOBACCO SEEDLINGS AND THEIR EFFECTS ON GROWTH

Keyword(s):  
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 323
Author(s):  
Sujuan Shi ◽  
Lulu An ◽  
Jingjing Mao ◽  
Oluwaseun Olayemi Aluko ◽  
Zia Ullah ◽  
...  

CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, there are limited reports on their roles in seedling growth and development, especially in Solanaceae plants. In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally during seed germination and early seedling growth. To study the biological function of NtCIPK23 at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed germination and the appearance of green cotyledon of young tobacco seedling. Overexpression of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings. The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious difference in hypocotyl length among different tobacco materials was observed in the dark, compared to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion and hypocotyl elongation of young tobacco seedlings.


1958 ◽  
Vol 36 (5) ◽  
pp. 621-647 ◽  
Author(s):  
Z. A. Patrick ◽  
L. W. Koch

Substances capable of markedly inhibiting the respiration, germination, and growth of tobacco seedlings were obtained after residues from timothy, corn, rye, or tobacco plants had been allowed to decompose under appropriate conditions in the soil. Bio-assay tests, based on manometric methods, made it possible to determine some of the conditions under which the decomposition gave rise to phytotoxic by-products and to obtain rapidly an accurate measure of the degree of their toxicity. Among the factors influencing the production of the toxic products, the species and stage of maturity of plant material added, the water content and pH of the soil, and length of decomposition period seemed most important. Substances capable of reducing the respiration of tobacco seedlings by 50 to 90% were consistently obtained when any of the abovementioned plant residues had been decomposing for 15 to 25 days under conditions of high soil moisture and when the pH of the soil solution was below 5.5 throughout this period. Timothy gave rise to substances possessing the highest toxic activity, followed by corn, then rye, and finally tobacco. Aqueous extracts of unamended soil or of macerated plant tissues prepared either before decomposition had taken place or when decomposition was inhibited by autoclaving the soil were not toxic.The toxic substances, obtained by water extraction, exhibited an inhibiting effect on respiration of tobacco seedlings after an exposure of less than one hour and also induced darkening and necrosis of root cells. Some extracts affected the cells of the apical meristem most severely while others affected only the cells of the elongation region.While the toxic substances have not been identified, they were relatively nonspecific in their action, affecting tobacco, timothy, and barley in approximately the same manner and in many instances possessed also antifungal activity. They were soluble in water, insoluble in petroleum ether, stable in acid, and most active in the pH range 4.5 to 5.8. They were precipitated by alkali and the activity was markedly reduced when readjusted to the acid range. They were also heat stable and did not lose their activity in storage at 1°–3 °C. provided they were covered by a layer of toluene.Because of their rapid production and the marked injurious effects exerted on various plants it is believed that these toxins may perform a significant role in the field as the primary cause of some root rots and in predisposing plants to attack by organisms not normally regarded as pathogenic.


2011 ◽  
Vol 66 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Yoshio Kawaguchi ◽  
Takumi Nishiuchi ◽  
Hiraoki Kodama ◽  
Toshitsugu Nakano ◽  
Kazuma Nishimura ◽  
...  

2021 ◽  
Author(s):  
Mengxia Li ◽  
Xiaopeng Deng ◽  
Ke Ren ◽  
Rui Liu ◽  
Tao Wang ◽  
...  

Abstract Boron (B) is a micronutrient tobacco needs in minute amounts, and Boron insufficient supply can causes significant tobacco yield loss, however, the appropriate concentration for flue-cured tobacco seedlings to growth remains unknown. In this sense, a hydroponic experiment was conduct to measure the agronomic traits, dry matter mass, chlorophyll content, photosynthetic performance, antioxidant enzymes, boron ion and nicotine content of flue-cured tobacco seedlings K326 under different boron concentrations of 0.000mmol/L (B1, CK), 0.125mmol/L (B2), 0.250mmol/L (B3), 0.750mmol/L (B4), 5.000mmol/L (B5), 10.000mmol/L (B6), 20.000mmol/L (B7), 40.000mmol/L (B8) after 30 days. B significantly influenced flue-tobacco seedlings growth on agronomic traits, photosynthetic performance, the activities of antioxidant enzymes, boron ion and nicotine content aspects. B linearly enhanced the accumulation of boron ion by 24.00%~96.44%, and decreased nicotine content by 21.60%~82.03% in tobacco seedlings. Solution B concentration at 0.750 and 5.000mmol/L markedly improved tobacco seedlings maximum leaf length by 4.83%~82.03% and leaf width by 0.77%~24.36%, root weight by 13.64%~56.82%, stem weight by 12.26%~52.36%, leaf weight by 9.68%~36.56%, dry matter mass by 10.65%~38.92%, the Pn parameter by 1.22%~80.28%, the Cond paramete by 33.40%~75.86%, while decreased the activities of SOD by 10.44%~91.67%, POD by 21.32%~65.62% and CAT by 50.05%~96.44%, and MDA by 16.23%~75.16%. The B concentration concluded in this study enhanced the agronomy traits, photosynthetic and biochemical characteristics of flue-cured tobacco seedlings, which lays a scientific theoretical foundation for rational application of B in tobacco production and improve the internal quality of flue-cured tobacco.


Planta ◽  
2000 ◽  
Vol 210 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Andrea Migge ◽  
Elisa Carrayol ◽  
Bertrand Hirel ◽  
Thomas W. Becker

Sign in / Sign up

Export Citation Format

Share Document