early seedling growth
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 83)

H-INDEX

35
(FIVE YEARS 5)

Seeds ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 5-15
Author(s):  
José A. Hernández ◽  
Pedro Díaz-Vivancos ◽  
José Ramón Acosta-Motos ◽  
Gregorio Barba-Espín

(1) Background: Seed treatment with potassium nitrate (KNO3) has been associated with dormancy breaking, improved germination and enhanced seedling growth and uniformity in a variety of plant species. However, the KNO3 effect seems to be dependent on plant species and treatment conditions. (2) Methods: We describe the effect of incubation of dry pea seeds with different KNO3 concentration on water uptake kinetic, early seedling growth, antioxidant metabolism and hormone profile in pea seedlings. (3) Results: Low (0.25 mM) KNO3 levels increased seedling water uptake and growth, whereas high (40 mM) levels decreased seedling growth. KNO3 treatment differentially affected the antioxidant defences. Low KNO3 levels maintained the activity of antioxidant enzymes, while high levels reduced the activity of H2O2-scavenging enzymes. KNO3 induced a progressive decline in ascorbate levels and reduced (GSH) and oxidised (GSSG) glutathione. Low KNO3 levels strongly increased GA1 and decreased ABA in both seedlings and cotyledons, resulting in a decline in the ABA/GAs ratio. (4) Conclusions: Pea seed treatment with a low KNO3 level promoted early seedling growth. In this process, an interaction among KNO3, antioxidant defences and ABA/GAs ratio is proposed.


2021 ◽  
Vol 25 (6) ◽  
pp. 969-975
Author(s):  
M.K. Peter ◽  
SIN Agera ◽  
J.I. Amonum

This study investigated the effects of potting media on seed germination and early seedling growth of Pterocarpus erinaceus Poir at the Forestry Nursery in Jos, Nigeria. Using Completely Randomized Design (CRD) with three replicates, laboratory-tested soil samples, top soil, sharp sand, sharp sand + top soil, sharp sand + top soil + cow dung and sharp sand + top soil + poultry droppings were used in various combinations to assess the growth parameters of P. erinaceus (germination percentage, emergence, plant height, number of leaves, length of leaves and stem diameter) for 12 weeks. Descriptive and inferential statistics were employed to analyze collected data. Result indicated that sharp sand + top soil + poultry droppings had the highest nitrogen concentration (2.19%), sharp sand + top soil + cow dung (2.07%), sharp sand + top soil (1.50%), top soil (0.72%) and Sharp sand (0.38%). Potting media with poultry droppings recorded an overall higher percentage germination of 42.9% by the end of the germination period. Analysis of variance (ANOVA) of collected data on combined soil aggregate on growth parameters indicated a significant (p<0.05) difference in plant height, number of leaves, leaf length and stem diameter. Potting with poultry dropping gave the best potting media growth results when compared to other treatments that enhanced seed germination and seedling growth of P. erinaceus. This superior observation of the poultry droppings incorporated potting mixtures over the cow dung provides an outstanding potentials to enhance P. erinaceus plantation establishment. Consequently, recommended for raising seedlings in the nursery as well as ensuring sustainable management.


Author(s):  
Vikrant ◽  
A. Jasmine ◽  
M. Roselin Roobavathi

Abiotic stress such as drought and agrochemicals leads the drastic reductions in legume yields, hence, in order to mitigate the loss of yields due to abiotic stresses, the production of stress tolerance genotypes of the legumes could be a rewarding approach. Therefore, the aim of the present study was to evaluate the drought and herbicide stress effects under ex-vitro conditions on seed germination and early seedling growth in a legume crop mung bean (Vigna radiata L.). To begin with, drought stress was induced by employing various concentrations of mannitol (50mM, 100mM, 250mM, 500mM, 750mM, and 1000mM) and polyethylene glycol (PEG-5%, 10%, 15%, 20%, and 25%) while during herbicide stress experiments, dicamba (3,6-dichloro-2-methoxybenzoic acid) and picloram (4-Amino-3,5,6-trichloro-2-pyridine carboxylic acid) were considered in various concentrations (5mg/L, 25mg/L, 50mg/L, and 100mg/L) of each. Moreover, data were collected as partial and full seed germination after 3- and 7-days of stress treatments respectively. After 7-days of mannitol stress treatments, results reveals that even the high concentration of mannitol (500mM) could be proved as weak osmotic stressor for seed germination (35%±0.14) in comparison to control (91%±0.74) while further increase in mannitol concentration (750mM) was proved to be lethal, toxic and inhibits seed germination completely. Furthermore, in comparison to mannitol, PEG turns out as strong osmotic stressors and (15%) of PEG was proved to very lethal for seed germination. Even during early seedling growth, increased concentrations of both mannitol and PEG were found to be inhibitory. Among two herbicides, the result shows that both herbicides (dicamba and picloram) were proved to be completely toxic and lethal even at very low concentrations (5mg/L) and induced abnormal seed germination and inhibited completely seedling growth. However, the inhibitory response of picloram herbicide stress on seed germination was found to be more pronounced and severe than dicamba herbicide. Hence, the present study reveals that in comparison to mannitol, PEG turns out as a strong osmotic stressor while picloram proves to be a relatively more toxic herbicide than dicamba for seed germination. Additionally, drought stress induced seedlings on transfer to soil exhibit inhibited growth under continuous irrigation with either mannitol or PEG solutions.  


Author(s):  
R. Himaja ◽  
K. Radhika ◽  
K. Bayyapu Reddy ◽  
M. Raghavendra

Background: Drought stress at germination and early growth stages hinders the seedling establishment in chickpea which ultimately affects the economic yield. Such adverse affects of drought can be mitigated by screening and identifying the tolerant genotypes of chickpea which is commonly cultivated under rain-fed conditions during post-rainy season. Methods: Effect of drought stress on germination and early seedling growth of thirty three chickpea genotypes was studied under four different concentrations of PEG 6000 (-0.3, -0.6, -0.9 and -1.2 MPa) along with control and hydration under laboratory conditions during 2018-19. Result: Significant variation was observed among the genotypes for germination, root length, shoot length and seedling vigour index under different concentrations of PEG 6000. Complete inhibition of germination was observed in most of the genotypes at -1.2 MPa. Based on the results obtained, JG 11 and NBeG 3 were considered as tolerant since they showed comparatively higher germination, root length, shoot length and seedling vigour even at -1.2 MPa, while NBeG 723 and NBeG 833 were considered as susceptible genotypes because of their poor germination and seedling growth even at lower levels of drought stress.


2021 ◽  
Vol 13 (2) ◽  
pp. 10936
Author(s):  
Ganesh D. MANKAR ◽  
Uttam R. WAYASE ◽  
Deepak B. SHELKE ◽  
Tukaram D. NIKAM ◽  
Rajkumar B. BARMUKH

Seventeen mungbean varieties [Vigna radiata (L.) R. Wilczek] were subjected to 100-400 mM salinity stress at the germination stage, and the indices of seed germination and early seedling growth were analysed. With the increasing salinity, seed germination and seedling growth attributes were affected in all varieties. Principal component analysis and hierarchical cluster analysis of varietal responses on the germination and seeding growth attributes at 400 mM NaCl separated seventeen varieties into four distinct clusters. Principal component analysis at lower salt stress levels indicated that the attributes of germination and early seedling growth are reliable to identify salt-tolerant mungbean varieties. In contrast, only germination attributes are reliable at higher salinity levels. Two salt-susceptible and salt-tolerant varieties were further assessed for NaCl-induced physiological and biochemical changes. Levels of proteins, secondary metabolites, osmolyte, and antioxidants were increased at lower salt concentrations but reduced at higher salt concentrations. Photosynthetic pigments decreased and membrane damage increased under salinity. Varieties that showed tolerance to salt stress can be used in salinity-affected agriculture fields after validating their salt tolerance in field experiments.


2021 ◽  
Vol 22 (12) ◽  
pp. 6605
Author(s):  
Yonggang He ◽  
Menghao Zhu ◽  
Zhihui Li ◽  
Shan Jiang ◽  
Zijun He ◽  
...  

Ideal Plant Architecture 1 (IPA1) encodes SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14 (SPL14) with a pleiotropic effect on regulating rice development and biotic stress responses. To investigate the role of IPA1 in early seedling development, we developed a pair of IPA1/ipal-NILs and found that seed germination and early seedling growth were retarded in the ipa1-NIL. Analysis of the soluble sugar content, activity of amylase, and expression of the α-amylase genes revealed that the starch metabolism was weakened in the ipa1-NIL germinating seeds. Additionally, the content of bioactive gibberellin (GA) was significantly lower than that in the IPA1-NIL seeds at 48 h of imbibition. Meanwhile, the expression of GA synthesis-related gene OsGA20ox1 was downregulated, whereas the expression of GA inactivation-related genes was upregulated in ipa1-NIL seeds. In addition, the expression of OsWRKY51 and OsWRKY71 was significantly upregulated in ipa1-NIL seeds. Using transient dual-luciferase and yeast one-hybrid assays, IPA1 was found to directly activate the expression of OsWRKY51 and OsWRKY71, which would interfere with the binding affinity of GA-induced transcription factor OsGAMYB to inhibit the expression of α-amylase genes. In summary, our results suggest that IPA1 negatively regulates seed germination and early seedling growth by interfering with starch metabolism via the GA and WRKY pathways.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1166
Author(s):  
Mohamed Kouighat ◽  
Hafida Hanine ◽  
Mohamed El Fechtali ◽  
Abdelghani Nabloussi

In the context of climate change and water scarcity, there is a need to develop and use drought-tolerant sesame cultivars. This study was conducted to evaluate the response of 13 sesame genotypes, including 11 mutants and their wild-types, to drought during germination and early seedling growth. Moderate and severe drought stress was simulated by applying polyethylene glycol (PEG) at two osmotic potentials, −0.6 MPa and −1.2 MPa, respectively, on seeds of two successive mutant generations, M2 and M3. The parameters measured or calculated were germination percentage (GP), germination rate (GR), mean germination time (MGT), root length (RL), shoot length (SL), root to shoot ratio (RSR), and the seedling vigor index (SVI). Results showed the significant effect of genotype, drought, and drought × genotype interaction on all parameters investigated. Under severe drought, seeds of seven genotypes, including wild types, were not able to germinate. There was a drastic decline of all parameters for the rest, except MGT and RSR, which markedly increased. Interestingly, two mutants, “ML2-5” and “ML2-10”, were identified as the most tolerant to severe drought and the most stable over both generations. The present work is the first report of sesame germplasm with such a high level of tolerance to drought during germination and early seedling growth stages.


Sign in / Sign up

Export Citation Format

Share Document