scholarly journals Land cover changes in Poland between 1990 and 2012

Geografie ◽  
2018 ◽  
Vol 123 (1) ◽  
pp. 63-83 ◽  
Author(s):  
Marta Borowska-Stefańska ◽  
Katarzyna Leśniewska-Napierała ◽  
Szymon Wiśniewski

The aim of the article is to assess the intensity and directions of land cover changes in Poland between 1990 and 2012. To achieve this goal, the authors used data from databases such as the CORINE Land Cover (CLC). The changes were analyzed for the first level of data and then presented in the matrix form both as absolute values (ha) and as percentages referring to the total aggregate land surface subject to land cover changes in this period. At the following stage of the analysis attention shifted solely to those fluctuations which referred to artificial surfaces in relation to the municipality or the cadastral unit. Subsequently, a spatial autocorrelation of land cover changes in municipalities in Poland was defined.

2020 ◽  
Vol 18 ◽  
pp. 100314 ◽  
Author(s):  
Abdulla - Al Kafy ◽  
Md. Shahinoor Rahman ◽  
Abdullah-Al- Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Muhaiminul Islam

2021 ◽  
Author(s):  
Sebastian Drost ◽  
Fabian Netzel ◽  
Andreas Wytzisk-Ahrens ◽  
Christoph Mudersbach

<p>The application of Deep Learning methods for modelling rainfall-runoff have reached great advances in the last years. Especially, long short-term memory (LSTM) networks have gained enhanced attention for time-series prediction. The architecture of this special kind of recurrent neural network is optimized for learning long-term dependencies from large time-series datasets. Thus, different studies proved the applicability of LSTM networks for rainfall-runoff predictions and showed, that they are capable of outperforming other types of neural networks (Hu et al., 2018).</p><p>Understanding the impact of land-cover changes on rainfall-runoff dynamics is an important task. Such a hydrological modelling problem typically is solved with process-based models by varying model-parameters related to land-cover-incidents at different points in time. Kratzert et al. (2019) proposed an adaption of the standard LSTM architecture, called Entity-Aware-LSTM (EA-LSTM), which can take static catchment attributes as input features to overcome the regional modelling problem and provides a promising approach for similar use cases. Hence, our contribution aims to analyse the suitability of EA-LSTM for assessing the effect of land-cover changes.</p><p>In different experimental setups, we train standard LSTM and EA-LSTM networks for multiple small subbasins, that are associated to the Wupper region in Germany. Gridded daily precipitation data from the REGNIE dataset (Rauthe et al., 2013), provided by the German Weather Service (DWD), is used as model input to predict the daily discharge for each subbasin. For training the EA-LSTM we use land cover information from the European CORINE Land Cover (CLC) inventory as static input features. The CLC inventory includes Europe-wide timeseries of land cover in 44 classes as well as land cover changes for different time periods (Büttner, 2014). The percentage proportion of each land cover class within a subbasin serves as static input features. To evaluate the impact of land cover data on rainfall-runoff prediction, we compare the results of the EA-LSTM with those of the standard LSTM considering different statistical measures as well as the Nash–Sutcliffe efficiency (NSE).</p><p>In addition, we test the ability of the EA-LSTM to outperform physical process-based models. For this purpose, we utilize existing and calibrated hydrological models within the Wupper basin to simulate discharge for each subbasin. Finally, performance metrics of the calibrated model are used as benchmarks for assessing the performance of the EA-LSTM model.</p><p><strong>References</strong></p><p>Büttner, G. (2014). CORINE Land Cover and Land Cover Change Products. In: Manakos & M. Braun (Hrsg.), Land Use and Land Cover Mapping in Europe (Bd. 18, S. 55–74). Springer Netherlands. https://doi.org/10.1007/978-94-007-7969-3_5</p><p>Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11), 1543. https://doi.org/10.3390/w10111543</p><p>Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 23(12), 5089–5110. https://doi.org/10.5194/hess-23-5089-2019</p><p>Rauthe, M, Steiner, H, Riediger, U, Mazurkiewicz, A &Gratzki, A (2013): A Central European precipitation climatology – Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS), Meteorologische Zeitschrift, Vol 22, No 3, 235–256. https://doi.org/10.1127/0941-2948/2013/0436</p>


2020 ◽  
Vol 12 (10) ◽  
pp. 1631 ◽  
Author(s):  
Chao Fan ◽  
Zhe Wang

There has been an increasing concern of rising temperatures as cities continue to expand and intensify. Urban warming is having significant impacts on the environment that are far beyond city limits. Understanding the development pattern of the urban heat island (UHI) effect is crucial for making action plans to mitigate urban warming. In this study, we combine multitemporal satellite imagery, spatial autocorrelation indices, and statistical analysis into a spatiotemporal study of the surface UHI effect in the Boise-Meridian metropolitan area. A continuous landscape modeling perspective was taken to quantitatively depict the abundance and spatial configuration of green vegetation and built-up areas at a landscape scale. We aim to (1) evaluate the variations in the land surface temperatures (LST) along the urban–rural gradients of Boise for multiple years, (2) identify the relationships of the LST variations with the land cover variables quantified using the spatial autocorrelation indices, and (3) analyze the changing climate in Boise in conjunction with its urbanization pattern over the last two decades. Results show that the region experienced a significant increase in the LST along with a great expansion of urban areas at the cost of agriculture. The warming effect of built-up areas was greater than the cooling effect of green vegetation, suggesting an urgent need for increasing greenspace in the city. Statistical analyses show that clustered vegetation and dispersed built-up features are beneficial for reducing the LST. Our study presents a spatiotemporal framework for analyzing the surface UHI effect from multiple angles. Scientific findings from this study can help make informed policies against urban warming via optimal planning of urban land cover.


Sign in / Sign up

Export Citation Format

Share Document