scholarly journals A Comparative Study of DFT/B3LYP/6-31 G(d,p), RM062X/6-31G8d,p), B3LYP/6-311++ G(d,p) and HSEH1PBE/6-31G(d,p) Methods Applied to Molecular Geometry and Electronic properties of Cs-C60 Cl6 Molecule

Author(s):  
Ebru KARAKAŞ SARIKAYA ◽  
Ömer DERELİ ◽  
Semiha BAHÇELİ
2021 ◽  
Author(s):  
Wei Feng ◽  
Qunqing Hao ◽  
Qiuyun Chen ◽  
Ruizhi Qiu ◽  
Xinchun Lai ◽  
...  

2018 ◽  
Vol 149 (5) ◽  
pp. 054106 ◽  
Author(s):  
Juliana Srour ◽  
Michael Badawi ◽  
Fouad El Haj Hassan ◽  
Andrei Postnikov

2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


2017 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Tahar Abbaz ◽  
Amel Bendjeddou ◽  
Didier Villemin

In this work, through computational study based on density functional theory (DFT/B3LYP) using basis set 6-31G (d,p) a number of global and local reactivity descriptors for a series of molecules containing a TTF function which are bis (1,4-dithiafulvalene) derivatives. They were computed to predict the reactivity and the reactive sites on the molecules. The molecular geometry and the electronic properties in the ground state such as frontier molecular orbital (HOMO and LUMO), ionization potential (I) and electron affinity (A) were investigated to get a better insight of the molecular properties. Molecular electrostatic potential (MEP) for all compounds were determined to check their electrophilic or nucleophilic reactivity. Fukui index, polarizability, hyperpolarizability, second order NLO property and natural bond orbital (NBO) analyses have also employed to determine the reactivity of bis (1,4-dithiafulvalene) derivatives.


Sign in / Sign up

Export Citation Format

Share Document