EFFICACY OF MIXED MS2-L2 VLPS AGAINST SIX HPV TYPES AND THE DEVELOPMENT & EVALUATION OF VIRAL STRUCTURAL PROTEINS FOR ASSEMBLY INTO VLPS

2021 ◽  
Author(s):  
Rashi Yadav



2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Yimin Tong ◽  
Qingchao Li ◽  
Rui Li ◽  
Yongfen Xu ◽  
Yu Pan ◽  
...  

ABSTRACT Hepatitis C virus (HCV) infection remains a major worldwide health problem despite development of highly effective direct-acting antivirals. HCV rapidly evolves upon acute infection and generates multiple viral variants (quasispecies), leading to immune evasion and persistent viral infection. Identification of epitopes of broadly neutralizing anti-HCV antibodies (nAbs) is critical to guide HCV vaccine development. In this study, we developed a new reverse genetics system for HCV infection based on trans-complementation of viral structural proteins. The HCV genome (JFH1 strain) lacking the structural protein-coding sequence can be efficiently rescued by ectopic expression of core-E1-E2-p7-NS2 (core-NS2) or core-E1-E2-p7 (core-p7) in trans, leading to production of single-round infectious virions designated HCVΔS. JFH1-based HCVΔS can be also rescued by expressing core-NS2 of other HCV genotypes, rendering it an efficient tool to display the structural proteins of HCV strains of interests. Furthermore, we successfully rescued HCVΔS with structural proteins from clinical isolates. Multiple viral structural proteins with different sensitivities to nAbs were identified from a same patient serum, demonstrating the genetic diversity of HCV quasispecies in vivo. Interestingly, the structural protein-coding sequences of highly divergent viral quasispecies from the same patient can be clustered based on their hypervariable region 1 (HVR1) in viral envelope protein E2, which critically dictates the sensitivity to neutralizing antibodies. In summary, we developed a novel reverse genetics system that efficiently displays viral structural proteins from HCV clinical isolates, and analysis of quasispecies from the same patient using this system demonstrated that E2 HVR1 is the major determinant of viral evolution in vivo. IMPORTANCE A cell culture model that can recapitulate the diversity of HCV quasispecies in patients is important for analysis of neutralizing epitopes and HCV vaccine development. In this study, we developed a new reverse genetics system for HCV infection based on trans-complementation of viral structural proteins (HCVΔS). This system can be used to display structural proteins of HCV strains of multiple genotypes as well as clinical isolates. By using this system, we showed that multiple different HCV structural proteins from a same patient were displayed on HCVΔS. Interestingly, these variant structural proteins within the same patient can be classified according to the sequence of HVR1in E2, which dictates viral sensitivity to nAbs and viral evolution in vivo. Our work provided a new tool to study highly divergent HCV quasispecies and shed light on underlying mechanisms driving HCV evolution.



Virology ◽  
1993 ◽  
Vol 194 (2) ◽  
pp. 705-714 ◽  
Author(s):  
Yawei Ni ◽  
Robert F. Ramig


1977 ◽  
Vol 20 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Michael J. Rogers ◽  
Lloyd W. Law ◽  
Ettore Appella ◽  
Stephen Oroszlan ◽  
Chou-Chik Ting


2001 ◽  
Vol 75 (19) ◽  
pp. 9010-9017 ◽  
Author(s):  
Xiaodi Ren ◽  
Jerome S. Harms ◽  
Gary A. Splitter

ABSTRACT Tyrosine phosphorylation has been shown to play a role in the replication of several herpesviruses. In this report, we demonstrate that bovine herpesvirus 1 infection triggered tyrosine phosphorylation of proteins with molecular masses similar to those of phosphorylated viral structural proteins. One of the tyrosine-phosphorylated viral structural proteins was the tegument protein VP22. A tyrosine 38-to-phenylalanine mutation totally abolished the phosphorylation of VP22 in transfected cells. However, construction of a VP22 tyrosine 38-to-phenylalanine mutant virus demonstrated that VP22 was still phosphorylated but that the phosphorylation site may change to the C terminus rather than be in the N terminus as in wild-type VP22. In addition, the loss of VP22 tyrosine phosphorylation correlated with reduced incorporation of VP22 compared to that of envelope glycoprotein D in the mutant viruses but not with the amount of VP22 produced during virus infection. Our data suggest that tyrosine phosphorylation of VP22 plays a role in virion assembly.



2004 ◽  
Vol 78 (24) ◽  
pp. 14043-14047 ◽  
Author(s):  
Yee-Joo Tan ◽  
Burtram C. Fielding ◽  
Phuay-Yee Goh ◽  
Shuo Shen ◽  
Timothy H. P. Tan ◽  
...  

ABSTRACT Besides genes that are homologous to proteins found in other coronaviruses, the severe acute respiratory syndrome coronavirus genome also contains nine other potential open reading frames. Previously, we have characterized the expression and cellular localization of two of these “accessory” viral proteins, 3a (previously termed U274) and 7a (previously termed U122). In this study, we further examined whether they can induce apoptosis, which has been observed clinically. We showed that the overexpression of 7a, but not of 3a or the viral structural proteins, nucleocapsid, membrane, and envelope, induces apoptosis. 7a induces apoptosis via a caspase-dependent pathway and in cell lines derived from different organs, including lung, kidney, and liver.



1989 ◽  
Vol 63 (5) ◽  
pp. 2191-2197 ◽  
Author(s):  
Z Y Fang ◽  
R I Glass ◽  
M Penaranda ◽  
H Dong ◽  
S S Monroe ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document