scholarly journals Feature of naturalized region of Papaver dubium (PAPAVERACEAE) in Japan−from the standpoint of seed germination characteristics

2009 ◽  
Vol 54 (2) ◽  
pp. 63-70
Author(s):  
Koji Yoshida ◽  
Yumiko Kanazawa ◽  
Kojiro Suzuki ◽  
Masayuki Nemoto
2019 ◽  
Vol 18 (9) ◽  
pp. 1875-1884
Author(s):  
Zhang Jun ◽  
Wang Wenke ◽  
Geng Yani ◽  
Wang Zhoufeng ◽  
Cao Shumiao

Weed Science ◽  
1978 ◽  
Vol 26 (3) ◽  
pp. 255-258 ◽  
Author(s):  
Chang-Chi Chu ◽  
R. D. Sweet ◽  
J. L. Ozbun

Germination of fruit of common lambsquarters(Chenopodium albumL.) from three out of four sources was enhanced by 9 to 41% by removal of the fruit coat, and by 21% by washing the fruit for 70 h. Brown-black seed germinated more rapidly than the black and brown seed after washing for 70 h. The washing treatment appeared to remove some unknown inhibitors. After washing, seed germination was found to be positively correlated with seed size.


2016 ◽  
Vol 76 (2) ◽  
pp. 367-373 ◽  
Author(s):  
A. B. Lone ◽  
R. C. Colombo ◽  
B. L. G. Andrade ◽  
L. S. A. Takahashi ◽  
R. T. Faria

Abstract The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable.


2007 ◽  
Vol 22 (3) ◽  
pp. 205-210 ◽  
Author(s):  
SLAÐANA TODOROVIĆ ◽  
SUZANA ŽIVKOVIĆ ◽  
ZLATKO GIBA ◽  
DRAGOLJUB GRUBIŠIĆ ◽  
DANIJELA MIŠIĆ

2012 ◽  
Vol 22 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Edgar E. Gareca ◽  
Filip Vandelook ◽  
Milton Fernández ◽  
Martin Hermy ◽  
Olivier Honnay

AbstractSeed germination is a crucial event in a plant's life cycle. Because temperature and water availability are important regulators of seed germination, this process will likely be influenced by global warming. Insight into the germination process under global warming is thus crucial, and requires the study of a wide range of water availability and temperature conditions. As hydrothermal time (HTT) models evaluate seed germination for any combination of water potential and temperature, they can be suitable to predict global warming effects on seed germination. We studied the germination characteristics of the high Andean endemic tree speciesPolylepis besseri(Rosaceae), using HTT models. We were especially interested in the potential effects of global warming on seed germination. Assembly of HTT models forP. besseriwas fairly straightforward due to the lack of a seed dormancy mechanism. The models allowed prediction ofPolylepisgermination under constant and alternating temperatures. Initially, a global warming induced increase in the field minimum and mean temperature will increaseP. besserigermination, but as maximum temperatures rise above the optimum temperature for the species, seed germination will become jeopardized. Effects of global warming on seed germination are currently considerably underexplored. HTT models prove to be useful tools to study a plant species' general germination characteristics, and how they may become affected under global warming. For the endemic mountain tree speciesP. besseri, we predict an increase, followed by a decrease of seed germination under global warming.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daisuke Hayasaka ◽  
Moe Nakagawa ◽  
Yu Maebara ◽  
Tomohiro Kurazono ◽  
Koya Hashimoto

Sign in / Sign up

Export Citation Format

Share Document