scholarly journals An Iterative Method for Solving Split Monotone Variational Inclusion Problems and Finite Family of Variational Inequality Problems in Hilbert Spaces

Author(s):  
Wanna Sriprad ◽  
Somnuk Srisawat

The purpose of this paper is to study the convergence analysis of an intermixed algorithm for finding the common element of the set of solutions of split monotone variational inclusion problem (SMIV) and the set of a finite family of variational inequality problems. Under the suitable assumption, a strong convergence theorem has been proved in the framework of a real Hilbert space. In addition, by using our result, we obtain some additional results involving split convex minimization problems (SCMPs) and split feasibility problems (SFPs). Also, we give some numerical examples for supporting our main theorem.

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Youli Yu ◽  
Pei-Xia Yang ◽  
Khalida Inayat Noor

We present a projection algorithm for finding a solution of a variational inclusion problem in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a solution of the variational inclusion problem which also solves some variational inequality.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Araya Kheawborisut ◽  
Atid Kangtunyakarn

AbstractFor the purpose of this article, we introduce a modified form of a generalized system of variational inclusions, called the generalized system of modified variational inclusion problems (GSMVIP). This problem reduces to the classical variational inclusion and variational inequalities problems. Motivated by several recent results related to the subgradient extragradient method, we propose a new subgradient extragradient method for finding a common element of the set of solutions of GSMVIP and the set of a finite family of variational inequalities problems. Under suitable assumptions, strong convergence theorems have been proved in the framework of a Hilbert space. In addition, some numerical results indicate that the proposed method is effective.


2021 ◽  
Vol 37 (3) ◽  
pp. 361-380
Author(s):  
JAMILU ABUBAKAR ◽  
◽  
POOM KUMAM ◽  
ABOR ISA GARBA ◽  
MUHAMMAD SIRAJO ABDULLAHI ◽  
...  

Variational inclusion is an important general problem consisting of many useful problems like variational inequality, minimization problem and nonlinear monotone equations. In this article, a new scheme for solving variational inclusion problem is proposed and the scheme uses inertial and relaxation techniques. Moreover, the scheme is self adaptive, that is, the stepsize does not depend on the factorial constants of the underlying operator, instead it can be computed using a simple updating rule. Weak convergence analysis of the iterates generated by the new scheme is presented under mild conditions. In addition, schemes for solving variational inequality problem and split feasibility problem are derived from the proposed scheme and applied in solving Nash-Cournot equilibrium problem and image restoration. Experiments to illustrate the implementation and potential applicability of the proposed schemes in comparison with some existing schemes in the literature are presented.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 255
Author(s):  
Yan Tang ◽  
Yeol Cho

In this paper, the split variational inclusion problem (SVIP) and the system of equilibrium problems (EP) are considered in Hilbert spaces. Inspired by the works of Byrne et al., López et al., Moudafi and Thukur, Sobumt and Plubtieng, Sitthithakerngkiet et al. and Eslamian and Fakhri, a new self-adaptive step size algorithm is proposed to find a common element of the solution set of the problems SVIP and EP. Convergence theorems are established under suitable conditions for the algorithm and application to the common solution of the fixed point problem, and the split convex optimization problem is considered. Finally, the performances and computational experiments are presented and a comparison with the related algorithms is provided to illustrate the efficiency and applicability of our new algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1548
Author(s):  
Yuanheng Wang ◽  
Mingyue Yuan ◽  
Bingnan Jiang

In our paper, we propose two new iterative algorithms with Meir–Keeler contractions that are based on Tseng’s method, the multi-step inertial method, the hybrid projection method, and the shrinking projection method to solve a monotone variational inclusion problem in Hilbert spaces. The strong convergence of the proposed iterative algorithms is proven. Using our results, we can solve convex minimization problems.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Haitao Che ◽  
Meixia Li

We introduce an iterative method to approximate a common solution of split variational inclusion problem and fixed point problem for nonexpansive semigroups with a way of selecting the stepsizes which does not need any prior information about the operator norms in Hilbert spaces. We prove that the sequences generated by the proposed algorithm converge strongly to a common element of the set of solutions of a split variational inclusion and the set of common fixed points of one-parameter nonexpansive semigroups. Moreover, numerical results demonstrate the performance and convergence of our result, which may be viewed as a refinement and improvement of the previously known results announced by many other researchers.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 749 ◽  
Author(s):  
Mujahid Abbas ◽  
Yusuf Ibrahim ◽  
Abdul Rahim Khan ◽  
Manuel De la Sen

The aim of this paper is to introduce a modified viscosity iterative method to approximate a solution of the split variational inclusion problem and fixed point problem for a uniformly continuous multivalued total asymptotically strictly pseudocontractive mapping in C A T ( 0 ) spaces. A strong convergence theorem for the above problem is established and several important known results are deduced as corollaries to it. Furthermore, we solve a split Hammerstein integral inclusion problem and fixed point problem as an application to validate our result. It seems that our main result in the split variational inclusion problem is new in the setting of C A T ( 0 ) spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Jitsupa Deepho ◽  
Poom Kumam

We introduced an implicit and an explicit iteration method based on the hybrid steepest descent method for finding a common element of the set of solutions of a constrained convex minimization problem and the set of solutions of a split variational inclusion problem.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jamilu Abubakar ◽  
Poom Kumam ◽  
Abor Isa Garba ◽  
Muhammad Sirajo Abdullahi ◽  
Abdulkarim Hassan Ibrahim ◽  
...  

<p style='text-indent:20px;'>A new strong convergence iterative method for solving a split variational inclusion problem involving a bounded linear operator and two maximally monotone mappings is proposed in this article. The study considers an iterative scheme comprised of inertial extrapolation step together with the Mann-type step. A strong convergence theorem of the iterates generated by the proposed iterative scheme is given under suitable conditions. In addition, methods for solving variational inequality problems and split convex feasibility problems are derived from the proposed method. Applications of solving Nash-equilibrium problems and image restoration problems are solved using the derived methods to demonstrate the implementation of the proposed methods. Numerical comparisons with some existing iterative methods are also presented.</p>


Sign in / Sign up

Export Citation Format

Share Document