scholarly journals Development of an equation of state fully implicit compositional model.

2000 ◽  
Vol 65 (4) ◽  
pp. 342-351
Author(s):  
Toshinori Nakashima ◽  
Nario Arihara ◽  
Hideaki Takeda ◽  
Kozo Sato ◽  
Nintoku Yazawa
SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 322-338 ◽  
Author(s):  
Choongyong Han ◽  
Mojdeh Delshad ◽  
Kamy Sepehrnoori ◽  
Gary Arnold Pope

Summary A fully implicit, parallel, compositional reservoir simulator has been developed that includes both a cubic equation of state model for the hydrocarbon phase behavior and Hand's rule for the surfactant/oil/brine phase behavior. The aqueous species in the chemical model include surfactant, polymer, and salt. The physical property models include surfactant/oil/brine phase behavior, interfacial tension, viscosity, adsorption, and relative permeability as a function of trapping number. The fully implicit simulation results were validated by comparison with results from our IMPEC chemical flooding simulator (UTCHEM). The results indicate that the simulator scales well using clusters of workstations. Also, simulation results from parallel runs are identical to those using a single processor. Field-scale surfactant/polymer flood simulations were successfully performed with over 1,000,000 gridblocks using multiple processors. Introduction Chemical flooding is a method to improve oil recovery that involves the injection of a solution of surfactant and polymer followed by a polymer solution. The surfactant causes the mobilization of oil by decreasing interfacial tension, whereas the polymer increases the sweep efficiency by lowering the mobility ratio. Chemical flooding has the potential to recover a very high fraction of the remaining oil in a reservoir, but the process needs to be designed to be both cost effective and robust, which requires careful optimization. Several reservoir simulators with chemical flooding features have been developed as a tool for optimizing the design (Delshad et al. 1996; Schlumberger 2004; Computer Modeling 2004). The University of Texas chemical flooding simulator, UTCHEM (Delshad et al. 1996) is an example of a simulator that has been used for this purpose. However, because UTCHEM is an Implicit Pressure and Explicit Concentration (IMPEC) formulation and in its current form cannot run on parallel computers, realistic surfactant/polymer flooding simulations are limited to around 100,000 gridblocks because of small timestep restrictions and insufficient memory. Recently, the appropriate chemical module was added to the fully implicit, parallel, EOS compositional simulator called GPAS (General Purpose Adaptive Simulator) based on a hybrid approach (John et al. 2005). GPAS uses a cubic equation of state model for the hydrocarbon phase behavior and the parallel and object-based Fortran 95 framework for managing memory, input/output, and the necessary communication between processors (Wang et al. 1999; Parashar et al. 1997). In the hybrid approach implemented in GPAS, the material balance equations for hydrocarbon and water components are solved implicitly first. Then, the material balance equations for the aqueous components such as surfactant, polymer, and electrolytes are solved explicitly using the updated phase fluxes, saturations, and densities.


1980 ◽  
Vol 20 (05) ◽  
pp. 363-376 ◽  
Author(s):  
Keith H. Coats

Abstract This paper describes an implicit, three-dimensional formulation for simulating compositional-type reservoir problems. The model treats three-phase flow in Cartesian (x-y-z) or cylindrical (r-theta-z) geometries. Applicability ranges from depletion or cycling of volatile oil and gas condensate to miscible flooding operations involving either outright or multicontact-miscibility.The formulation uses an equation of state for phase equilibrium and property calculations. The equation of state provides consistency and smoothness as gas- and oil-phase compositions and properties converge near a critical point. This avoids computational problems near a critical point associated with use of different correlations for K values as opposed to phase densities. Computational testing with example multicontact-miscibility (MCM) problems indicates stable convergence of this formulation as phase properties converge at a critical point. Results for these MCM problems show significant numerical dispersion, primarily affecting the calculated velocity of the miscible-front advance. Our continuing effort is directed toward reduction of this numerical disperson and comparison of model results with laboratory experiments for both MCM and outright-miscibility cases.We feel that the implicit nature of the model enhances efficiency as well as reliability for most compositional-type problems. However, while we report detailed problem results and associated computing times, we lack similar reported times to compare the overall efficiency of an implicit compositional formulation with that of a semi-implicit formulation. Introduction Many papers have treated increasingly sophisticated or efficient methods for numerical modeling of black-oil reservoir performance. That type of reservoir allows an assumption that reservoir gas and oil have different but fixed compositions, with the solubility of gas in oil being dependent on pressure alone.A smaller number of papers have presented numerical models for simulating isothermal "compositional" reservoirs, where oil and gas equilibrium compositions vary considerably with spatial position and time. With some simplification, the reservoir problems requiring compositional treatment can be divided into two types. The first type is depletion and/or cycling of volatile oil and gas condensate reservoirs. The second type is miscible flooding with MCM generated in situ.A distinction between these types is that the first usually involves phase compositions removed from the critical point, while the second type generally requires calculation of phase compositions and properties converging at the critical point. A compositional model should be capable of treating the additional problem of outright miscibility where the original oil and injected fluid are miscible on first contact.A difficulty in modeling the MCM process is achievement of consistent, stable convergence of gas-and oil-phase compositions, densities, and viscosities as the critical point is approached. A number of studies have reported models that use different correlations for equilibrium K-values as opposed to phase densities. Use of an equation of state offers the advantage of a single, consistent source of calculated K-values, phase densities, and their densities near a critical point. SPEJ P. 363^


SPE Journal ◽  
2009 ◽  
Vol 14 (02) ◽  
pp. 355-361 ◽  
Author(s):  
Kai Liu ◽  
Ganesan Subramanian ◽  
David I. Dratler ◽  
Jean-Pierre Lebel ◽  
Jeffrey A. Yerian

2011 ◽  
Vol 7 (S279) ◽  
pp. 395-396
Author(s):  
Kohsuke Sumiyoshi ◽  
Shoichi Yamada

AbstractWe develop a new numerical code of the multi-energy and multi-angle neutrino-radiation transfer in three dimensions (3D) for core-collapse supernovae. Our 3D code to solve the Boltzmann equations is based on the discretized-ordinate (SN) method with a fully implicit differencing for time advance. A basic set of neutrino reactions is implemented in the collision terms together with a realistic equation of state. By following the time evolution of neutrino distributions in six dimensions (3 spatial and 3 momentum-space) by the 3D Boltzmann solver, we study the 3D feature of neutrino transfer for given background models of supernova cores in order to understand the explosion mechanism through neutrino heating in multi dimensions.


Author(s):  
Shuang Zheng ◽  
Mukul M. Sharma

AbstractHorizontal wells are often drilled and hydraulically fractured in tight reservoirs to produce hydrocarbons or heat. Different fracturing fluids such as slick water, gas, foam, gel, or a combination can be used with slick water being the most common fracturing fluid. In this paper, we study the impacts of different fracturing fluids on fractured well productivity using an in-house integrated hydraulic fracturing and reservoir simulator with an equation-of-state compositional model. We analyzed the fracture geometry, stress interference, proppant placement, and the subsequent well productivity using different fracturing fluids. The results clearly show that different fracturing fluids result in very different fracture shape, sand distribution, and water and hydrocarbon production. By conducting fracturing and production simulations in one simulator, we ensure that no physics and data loss occurs due to data migration between two different software packages for hydraulic fracturing and reservoir simulation. To the best of the authors’ knowledge, this is the first time that a single integrated equation-of-state compositional hydraulic fracturing and reservoir simulator has been presented and applied for well lifecycle simulation.


Sign in / Sign up

Export Citation Format

Share Document