scholarly journals The Borwein Conjecture and Partitions with Prescribed Hook Differences

10.37236/1262 ◽  
1995 ◽  
Vol 3 (2) ◽  
Author(s):  
David A. Bressoud

Peter Borwein has conjectured that certain polynomials have non-negative coefficients. In this paper we look at some generalizations of this conjecture and observe how they relate to the study of generating functions for partitions with prescribed hook differences. A combinatorial proof of the generating function for partitions with prescribed hook differences is given.

10.37236/1927 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Ira M. Gessel ◽  
Pallavi Jayawant

Some of the classical orthogonal polynomials such as Hermite, Laguerre, Charlier, etc. have been shown to be the generating polynomials for certain combinatorial objects. These combinatorial interpretations are used to prove new identities and generating functions involving these polynomials. In this paper we apply Foata's approach to generating functions for the Hermite polynomials to obtain a triple lacunary generating function. We define renormalized Hermite polynomials $h_n(u)$ by $$\sum_{n= 0}^\infty h_n(u) {z^n\over n!}=e^{uz+{z^2\!/2}}.$$ and give a combinatorial proof of the following generating function: $$ \sum_{n= 0}^\infty h_{3n}(u) {{z^n\over n!}}= {e^{(w-u)(3u-w)/6}\over\sqrt{1-6wz}} \sum_{n= 0}^\infty {{(6n)!\over 2^{3n}(3n)!(1-6wz)^{3n}} {z^{2n}\over(2n)!}}, $$ where $w=(1-\sqrt{1-12uz})/6z=uC(3uz)$ and $C(x)=(1-\sqrt{1-4x})/(2x)$ is the Catalan generating function. We also give an umbral proof of this generating function.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Shreejit Bandyopadhyay ◽  
Ae Yee

Recently, George Beck posed many interesting partition problems considering the number of ones in partitions. In this paper, we first consider the crank generating function weighted by the number of ones and obtain analytic formulas for this weighted crank function under conditions of the crank being less than or equal to some specific integer. We connect these cumulative and point crank functions to the generating functions of partitions with certain sizes of Durfee rectangles. We then consider a generalization of the crank for $k$-colored partitions, which was first introduced by Fu and Tang, and investigate the corresponding generating function for this crank weighted by the number of parts in the first subpartition of a $k$-colored partition. We show that the cumulative generating functions are the same as the generating functions for certain unimodal sequences.


2021 ◽  
Vol 13 (2) ◽  
pp. 413-426
Author(s):  
S. Naderi ◽  
R. Kazemi ◽  
M. H. Behzadi

Abstract The bucket recursive tree is a natural multivariate structure. In this paper, we apply a trivariate generating function approach for studying of the depth and distance quantities in this tree model with variable bucket capacities and give a closed formula for the probability distribution, the expectation and the variance. We show as j → ∞, lim-iting distributions are Gaussian. The results are obtained by presenting partial differential equations for moment generating functions and solving them.


10.37236/2153 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Masanori Ando

In this paper, we give combinatorial proofs and new generalizations of $q$-series identities of Dilcher and Uchimura related to divisor function. Some interesting combinatorial results related to partition and arm-length are also presented.


2011 ◽  
Vol 21 (07) ◽  
pp. 1217-1235 ◽  
Author(s):  
VÍCTOR BLANCO ◽  
PEDRO A. GARCÍA-SÁNCHEZ ◽  
JUSTO PUERTO

This paper presents a new methodology to compute the number of numerical semigroups of given genus or Frobenius number. We apply generating function tools to the bounded polyhedron that classifies the semigroups with given genus (or Frobenius number) and multiplicity. First, we give theoretical results about the polynomial-time complexity of counting these semigroups. We also illustrate the methodology analyzing the cases of multiplicity 3 and 4 where some formulas for the number of numerical semigroups for any genus and Frobenius number are obtained.


2014 ◽  
Vol 23 (6) ◽  
pp. 1057-1086 ◽  
Author(s):  
PETER J. GRABNER ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

We consider statistical properties of random integer partitions. In order to compute means, variances and higher moments of various partition statistics, one often has to study generating functions of the form P(x)F(x), where P(x) is the generating function for the number of partitions. In this paper, we show how asymptotic expansions can be obtained in a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the literature, as well as some new statistics, are treated via this methodology. In addition, we show how to compute further terms in the asymptotic expansions of previously studied partition statistics.


1975 ◽  
Vol 12 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Henry Braun

The problem of approximating an arbitrary probability generating function (p.g.f.) by a polynomial is considered. It is shown that if the coefficients rj are chosen so that LN(·) agrees with g(·) to k derivatives at s = 1 and to (N – k) derivatives at s = 0, then LN is in fact an upper or lower bound to g; the nature of the bound depends only on k and not on N. Application of the results to the problems of finding bounds for extinction probabilities, extinction time distributions and moments of branching process distributions are examined.


2019 ◽  
Vol 7 ◽  
Author(s):  
DANIEL M. KANE ◽  
ROBERT C. RHOADES

Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for the number of integer partitions of$n$without$k$consecutive parts. The methods we develop are applicable in obtaining asymptotics for stochastic processes that avoid patterns; as a result they yield asymptotics for the number of partitions that avoid patterns.Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models, introduced the study of partitions without$k$consecutive parts. Andrews showed that when$k=2$, the generating function for these partitions is a mixed-mock modular form and, thus, has modularity properties which can be utilized in the study of this generating function. For$k>2$, the asymptotic properties of the generating functions have proved more difficult to obtain. Using$q$-series identities and the$k=2$case as evidence, Andrews stated a conjecture for the asymptotic behavior. Extensive computational evidence for the conjecture in the case$k=3$was given by Zagier.This paper improved upon early approaches to this problem by identifying and overcoming two sources of error. Since the writing of this paper, a more precise asymptotic result was established by Bringmann, Kane, Parry, and Rhoades. That approach uses very different methods.


The generating function for canonical transformations derived by Marinov has the important property of symplectic invariance (i. e. under linear canonical transformations). However, a more geometric approach to the rederivation of this function from the variational principle reveals that it is not free from caustic singularities after all. These singularities can be avoided without breaking the symplectic invariance by the definition of a complementary generating function bearing an analogous relation to the Woodward ambiguity function in telecommunications theory as that tying Marinov’s function to the Wigner function and the Weyl transform in quantum mechanics. Marinov’s function is specially apt to describe canonical transformations close to the identity, but breaks down for reflections through a point in phase space, easily described by the new generating function.


Sign in / Sign up

Export Citation Format

Share Document