scholarly journals Splitting Numbers of Grids

10.37236/1914 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwight Duffus ◽  
Bill Sands

For a subset $S$ of a finite ordered set $P$, let $$S\!\uparrow\;=\{x\in P:x\ge s \hbox{ for some }s\in S\}\quad\hbox{and} \quad S\!\downarrow\;=\{x\in P:x\le s \hbox{ for some }s\in S\}.$$ For a maximal antichain $A$ of $P$, let $$s(A)=\max_{A=U\cup D}{|U\!\uparrow|+|D\!\downarrow|\over|P|}\ ,$$ the maximum taken over all partitions $U\cup D$ of $A$, and $$s_k(P)=\min_{A\in {\cal A}(P),|A|=k}s(A)$$ where we assume $P$ contains at least one maximal antichain of $k$ elements. Finally, for a class ${\cal C}$ of finite ordered sets, we define $$s_k({\cal C})=\inf_{P\in {\cal C}}s_k(P).$$ Thus $s_k({\cal C})$ is the greatest proportion $r$ satisfying: every $k$-element maximal antichain of a member $P$ of ${\cal C}$ can be "split" into sets $U$ and $D$ so that $U\!\uparrow\cup\; D\!\downarrow$ contains at least $r|P|$ elements. In this paper we determine $s_k({\cal G}_k)$ for all $k\ge 1$, where ${\cal G}_k=\{{\bf k}\times{\bf n}:n\ge k\}$ is the family of all $k$ by $n$ "grids".

1983 ◽  
Vol 48 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Stevo Todorčević

Definition 1 (Kurepa [3, p. 99]). Let E be a partially ordered set. Then σE denotes the set of all bounded well-ordered subsets of E. We consider σE as a partially ordered set with ordering defined as follows: st if and only if s is an initial segment of t.Then σE is a tree, i.e., {s ∈ σ E∣ st} is well-ordered for every t ∈ σE. The trees of the form αE were extensively studied by Kurepa in [3]–[10]. For example, in [4], he used σQ and σR to construct various sorts of Aronszajn trees. (Here Q and R denote the rationals and reals, respectively.) While considering monotone mapping between some kind of ordered sets, he came to the following two questions several times:P.1. Does there exist a strictly increasing rational function on σQ? (See [4, Problème 2], [5, p. 1033], [6, p. 841], [7, Problem 23.3.3].)P.2. Let T be a tree in which every chain is countable and every level has cardinality <2ℵ0. Does there exist a strictly increasing real function on T? (See [6, p. 246] and [7].)It is known today that Problem 2 is independent of the usual axioms of set theory (see [1]). Concerning Problem 1 we have the following.


2015 ◽  
Vol 29 (1) ◽  
pp. 93-117
Author(s):  
Mieczysław Kula ◽  
Małgorzata Serwecińska

AbstractThe paper is devoted to the communication complexity of lattice operations in linearly ordered finite sets. All well known techniques ([4, Chapter 1]) to determine the communication complexity of the infimum function in linear lattices disappoint, because a gap between the lower and upper bound is equal to O(log2n), where n is the cardinality of the lattice. Therefore our aim will be to investigate the communication complexity of the function more carefully. We consider a family of so called interval protocols and we construct the interval protocols for the infimum. We prove that the constructed protocols are optimal in the family of interval protocols. It is still open problem to compute the communication complexity of constructed protocols but the numerical experiments show that their complexity is less than the complexity of known protocols for the infimum function.


Author(s):  
Árpád Száz

In this paper, having in mind Galois and Pataki connections, we establish several basic theorems on increasingly seminormal and semiregular functions between gosets. An ordered pair X(\leq )=(X,\leq ) consisting of a set X and a relation ≤ on X is called a goset (generalized ordered set). A function f of one goset X to another Y is called increasingly upper g-seminormal, for some function g of Y to X, if f(x)\leq y implies x \leq g(y). While, the function f is called increasingly upper φ-semiregular, for some function φ of X to itself, if f(u)\leq f(v) implies u\leq \varphi (v). The increasingly lower seminormal (semiregular) functions are defined by the reverse implications. Moreover, a function is called increasingly normal (regular) if it is both increasingly upper and lower seminormal (semiregular). The results obtained extend and supplement several former results of O. Ore and the present author on Galois and Pataki connections. Namely, the pairs (f, g) and (f, φ) may be called increasing Galois and Pataki connections if the function f is increasingly g-normal and φ-regular, respectively.


2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


2013 ◽  
Vol 13 (2) ◽  
pp. 161-183 ◽  
Author(s):  
Vadim Korneev

Abstract. A key component of domain decomposition solvers for hp discretizations of elliptic equations is the solver for internal stiffness matrices of p-elements. We consider an algorithm which belongs to the family of secondary domain decomposition solvers, based on the finite-difference like preconditioning of p-elements, and was outlined by the author earlier. We remove the uncertainty in the choice of the coarse (decomposition) grid solver and suggest the new interface Schur complement preconditioner. The latter essentially uses the boundary norm for discrete harmonic functions induced by orthotropic discretizations on slim rectangles, which was derived recently. We prove that the algorithm has linear arithmetical complexity.


1966 ◽  
Vol 18 ◽  
pp. 1004-1014 ◽  
Author(s):  
Richard A. Alo ◽  
Orrin Frink

A number of different ways of defining topologies in a lattice or partially ordered set in terms of the order relation are known. Three of these methods have proved to be useful and convenient for lattices of special types, namely the ideal topology, the interval topology, and the new interval topology of Garrett Birkhoff. In another paper (2) we have shown that these three topologies are equivalent for chains (totally ordered sets), where they reduce to the usual intrinsic topology of the chain.Since many important lattices are either direct products of chains or sublattices of such products, it is natural to ask what relationships exist between the various order topologies of a direct product of lattices and those of the lattices themselves.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050074
Author(s):  
Junye Ma ◽  
Qingguo Li ◽  
Hui Li

In this paper, we study some graph-theoretic properties about the zero-divisor graph [Formula: see text] of a finite quasi-ordered set [Formula: see text] with a least element 0 and its line graph [Formula: see text]. First, we offer a method to find all the minimal prime ideals of a quasi-ordered set. Especially, this method is applicable for a partially ordered set. Then, we completely characterize the diameter and girth of [Formula: see text] by the minimal prime ideals of [Formula: see text]. Besides, we perfectly classify all finite quasi-ordered sets whose zero-divisor graphs are complete graphs, star graphs, complete bipartite graphs, complete [Formula: see text]-partite graphs. We also investigate the planarity of [Formula: see text]. Finally, we obtain the characterization for the line graph [Formula: see text] in terms of its diameter, girth and planarity.


1979 ◽  
Vol 27 (4) ◽  
pp. 495-506 ◽  
Author(s):  
Dwight Duffus ◽  
Ivan Rival

AbstractLet P be a finite, connected partially ordered set containing no crowns and let Q be a subset of P. Then the following conditions are equivalent: (1) Q is a retract of P; (2) Q is the set of fixed points of an order-preserving mapping of P to P; (3) Q is obtained from P by dismantling by irreducibles.


1954 ◽  
Vol 6 ◽  
pp. 525-528
Author(s):  
Truman Botts

Let P be a set partially ordered by a (reflexive, antisymmetric, and transitive) binary relation ≺. Let be the family of all subsets K of P having the property that x ∈ P and y ∈ K and y ≺ x imply x ∈ K.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Peter Schust

AbstractPhysics has up to now missed to express in mathematical terms the fundamental idea of events of a path in time and space uniquely succeeding one another. An appropriate mathematical concept that reflects this idea is a well-ordered set. In such a set every subset has a least element. Thus every element of a well-ordered set has as its definite successor the least element of the subset of all elements larger than itself. This is apparently contradictory to the densely ordered real number lines which conventionally constitute the coordinate axes in any representation of time and space and in which between any two numbers exists always another number. In this article it is shown how decomposing this disaccord in favour of well-ordered sets causes spacetime to be discontinuous.


Sign in / Sign up

Export Citation Format

Share Document