scholarly journals The Chromatic Index of a Graph Whose Core has Maximum Degree $2$

10.37236/2101 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Mikio Kano ◽  
Saieed Akbari ◽  
Maryam Ghanbari ◽  
Mohammad Javad Nikmehr

Let $G$ be a graph. The core of $G$, denoted by $G_{\Delta}$, is the subgraph of $G$ induced by the vertices of degree $\Delta(G)$, where $\Delta(G)$ denotes the maximum degree of $G$. A $k$-edge coloring of $G$ is a function $f:E(G)\rightarrow L$ such that $|L| = k$ and $f(e_1)\neq f(e_2)$ for all two adjacent edges  $e_1$ and $e_2$ of $G$. The chromatic index of $G$, denoted by $\chi'(G)$, is the minimum number $k$ for which $G$ has a $k$-edge coloring.  A graph $G$ is said to be Class $1$ if $\chi'(G) = \Delta(G)$ and Class $2$ if $\chi'(G) = \Delta(G) + 1$. In this paper it is shown that every connected graph $G$ of even order and with $\Delta(G_{\Delta})\leq 2$ is Class $1$ if $|G_{\Delta}|\leq 9$ or $G_{\Delta}$ is a cycle of order $10$.

2013 ◽  
Vol 56 (3) ◽  
pp. 449-458 ◽  
Author(s):  
S. Akbari ◽  
M. Chavooshi ◽  
M. Ghanbari ◽  
S. Zare

Abstract.Let G be a graph. The minimum number of colors needed to color the edges of G is called the chromatic index of G and is denoted by χ'(G). It is well known that , for any graph G, where Δ(G) denotes the maximum degree of G. A graph G is said to be class 1 if x'(G) = Δ(G) and class 2 if χ'(G) = Δ(G)+1. Also, GΔ is the induced subgraph on all vertices of degree Δ(G). Let f : V(G) → ℕ be a function. An f-coloring of a graph G is a coloring of the edges of E(G) such that each color appears at each vertex v ∊ V(G) at most f (v) times. The minimum number of colors needed to f-color G is called the f-chromatic index of G and is denoted by χ'f (G). It was shown that for every graph , where . A graph G is said to be f -class 1 , and f -class 2, otherwise. Also, GΔf is the induced subgraph of G on . Hilton and Zhao showed that if G has maximum degree two and G is class 2, then G is critical, GΔ is a disjoint union of cycles and δ(G) = Δ(G)–1, where δ(G) denotes the minimum degree of G, respectively. In this paper, we generalize this theorem to f -coloring of graphs. Also, we determine the f -chromatic index of a connected graph G with |GΔf| ≤ 4.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


2019 ◽  
Vol 53 (1 (248)) ◽  
pp. 3-12
Author(s):  
A.B. Ghazaryan

Given a proper edge coloring $ \phi $ of a graph $ G $, we define the palette $ S_G (\nu, \phi) $ of a vertex $ \nu \mathclose{\in} V(G) $ as the set of all colors appearing on edges incident with $ \nu $. The palette index $ \check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.


10.37236/7016 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Mingfang Huang ◽  
Michael Santana ◽  
Gexin Yu

A strong edge-coloring of a graph $G$ is a coloring of the edges such that every color class induces a matching in $G$. The strong chromatic index of a graph is the minimum number of colors needed in a strong edge-coloring of the graph. In 1985, Erdős and Nešetřil conjectured that every graph with maximum degree $\Delta$ has a strong edge-coloring using at most $\frac{5}{4}\Delta^2$ colors if $\Delta$ is even, and at most $\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}$ if $\Delta$ is odd. Despite recent progress for large $\Delta$ by using an iterative probabilistic argument, the only nontrivial case of the conjecture that has been verified is when $\Delta = 3$, leaving the need for new approaches to verify the conjecture for any $\Delta\ge 4$. In this paper, we apply some ideas used in previous results to an upper bound of 21 for graphs with maximum degree 4, which improves a previous bound due to Cranston in 2006 and moves closer to the conjectured upper bound of 20.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050035
Author(s):  
Danjun Huang ◽  
Xiaoxiu Zhang ◽  
Weifan Wang ◽  
Stephen Finbow

The adjacent vertex distinguishing edge coloring of a graph [Formula: see text] is a proper edge coloring of [Formula: see text] such that the color sets of any pair of adjacent vertices are distinct. The minimum number of colors required for an adjacent vertex distinguishing edge coloring of [Formula: see text] is denoted by [Formula: see text]. It is observed that [Formula: see text] when [Formula: see text] contains two adjacent vertices of degree [Formula: see text]. In this paper, we prove that if [Formula: see text] is a planar graph without 3-cycles, then [Formula: see text]. Furthermore, we characterize the adjacent vertex distinguishing chromatic index for planar graphs of [Formula: see text] and without 3-cycles. This improves a result from [D. Huang, Z. Miao and W. Wang, Adjacent vertex distinguishing indices of planar graphs without 3-cycles, Discrete Math. 338 (2015) 139–148] that established [Formula: see text] for planar graphs without 3-cycles.


10.37236/4084 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Uwe Schauz

We prove that the list-chromatic index and paintability index of $K_{p+1}$ is $p$, for all odd primes $p$. This implies that the List Edge Coloring Conjecture holds for complete graphs with less then 10 vertices. It also shows that there are arbitrarily big complete graphs for which the conjecture holds, even among the complete graphs of class 1. Our proof combines the Quantitative Combinatorial Nullstellensatz with the Paintability Nullstellensatz and a group action on symmetric Latin squares. It displays various ways of using different Nullstellensätze. We also obtain a partial proof of a version of Alon and Tarsi's Conjecture about even and odd Latin squares.


2005 ◽  
Vol 2005 (16) ◽  
pp. 2669-2676 ◽  
Author(s):  
M. M. M. Jaradat

The edge chromatic number ofGis the minimum number of colors required to color the edges ofGin such a way that no two adjacent edges have the same color. We will determine a sufficient condition for a various graph products to be of class 1, namely, strong product, semistrong product, and special product.


2013 ◽  
Vol 22 (4) ◽  
pp. 499-516
Author(s):  
HEIDI GEBAUER

We study Maker/Breaker games on the edges ofsparsegraphs. Maker and Breaker take turns at claiming previously unclaimed edges of a given graphH. Maker aims to occupy a given target graphGand Breaker tries to prevent Maker from achieving his goal. We show that for everydthere is a constantc=c(d)with the property that for every graphGonnvertices of maximum degreedthere is a graphHon at mostcnedges such that Maker has a strategy to occupy a copy ofGin the game onH.This is a result about a game-theoretic variant of the size Ramsey number. For a given graphG,$\hat{r}'(G)$is defined as the smallest numberMfor which there exists a graphHwithMedges such that Maker has a strategy to occupy a copy ofGin the game onH. In this language, our result yields that for every connected graphGof constant maximum degree,$\hat{r}'(G) = \Theta(n)$.Moreover, we can also use our method to settle the corresponding extremal number foruniversalgraphs: for a constantdand for the class${\cal G}_{n}$ofn-vertex graphs of maximum degreed,$s({\cal G}_{n})$denotes the minimum number such that there exists a graphHwithMedges where, foreveryG∈${\cal G}_{n}$, Maker has a strategy to build a copy ofGin the game onH. We obtain that$s({\cal G}_{n}) = \Theta(n^{2 - \frac{2}{d}})$.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Manu Basavaraju

Graph Theory International audience An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). A graph G is called fully subdivided if it is obtained from another graph H by replacing every edge by a path of length at least two. Fully subdivided graphs are known to be acyclically edge colorable using Δ+1 colors since they are properly contained in 2-degenerate graphs which are acyclically edge colorable using Δ+1 colors. Muthu, Narayanan and Subramanian gave a simple direct proof of this fact for the fully subdivided graphs. Fiamcik has shown that if we subdivide every edge in a cubic graph with at most two exceptions to get a graph G, then a'(G)=3. In this paper we generalise the bound to Δ for all fully subdivided graphs improving the result of Muthu et al. In particular, we prove that if G is a fully subdivided graph and Δ(G) ≥3, then a'(G)=Δ(G). Consider a graph G=(V,E), with E=E(T) ∪E(C) where T is a rooted tree on the vertex set V and C is a simple cycle on the leaves of T. Such a graph G is called a Halin graph if G has a planar embedding and T has no vertices of degree 2. Let Kn denote a complete graph on n vertices. Let G be a Halin graph with maximum degree Δ. We prove that, a'(G) = 5 if G is K4, 4 if Δ = 3 and G is not K4, and Δ otherwise.


Sign in / Sign up

Export Citation Format

Share Document