scholarly journals On-line Ramsey Numbers of Paths and Cycles

10.37236/4097 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Joanna Cyman ◽  
Tomasz Dzido ◽  
John Lapinskas ◽  
Allan Lo

Consider a game played on the edge set of the infinite clique by two players, Builder and Painter. In each round, Builder chooses an edge and Painter colours it red or blue. Builder wins by creating either a red copy of $G$ or a blue copy of $H$ for some fixed graphs $G$ and $H$. The minimum number of rounds within which Builder can win, assuming both players play perfectly, is the on-line Ramsey number $\tilde{r}(G,H)$. In this paper, we consider the case where $G$ is a path $P_k$. We prove that $\tilde{r}(P_3,P_{\ell+1}) = \lceil 5\ell/4\rceil = \tilde{r}(P_3,C_{\ell})$ for all $\ell \ge 5$, and determine $\tilde{r}(P_4,P_{\ell+1})$ up to an additive constant for all $\ell \ge 3$. We also prove some general lower bounds for on-line Ramsey numbers of the form $\tilde{r}(P_{k+1},H)$.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 735
Author(s):  
Tomasz Dzido ◽  
Renata Zakrzewska

We consider the important generalisation of Ramsey numbers, namely on-line Ramsey numbers. It is easiest to understand them by considering a game between two players, a Builder and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r˜(G,H) is the minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path P4 and H is a path P10 or P11.



2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
J. A. Grytczuk ◽  
H. A. Kierstead ◽  
P. Prałat

Graphs and Algorithms International audience We study on-line version of size-Ramsey numbers of graphs defined via a game played between Builder and Painter: in one round Builder joins two vertices by an edge and Painter paints it red or blue. The goal of Builder is to force Painter to create a monochromatic copy of a fixed graph H in as few rounds as possible. The minimum number of rounds (assuming both players play perfectly) is the on-line Ramsey number r(H) of the graph H. We determine exact values of r(H) for a few short paths and obtain a general upper bound r(Pn) ≤ 4n −7. We also study asymmetric version of this parameter when one of the target graphs is a star Sn with n edges. We prove that r(Sn, H) ≤ n*e(H) when H is any tree, cycle or clique



10.37236/3684 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Jan Goedgebeur ◽  
Stanisław P. Radziszowski

Using computer algorithms we establish that the Ramsey number $R(3,K_{10}-e)$ is equal to 37, which solves the smallest open case for Ramsey numbers of this type. We also obtain new upper bounds for the cases of $R(3,K_k-e)$ for $11 \le k \le 16$, and show by construction a new lower bound $55 \le R(3,K_{13}-e)$.The new upper bounds on $R(3,K_k-e)$ are obtained by using the values and lower bounds on $e(3,K_l-e,n)$ for $l \le k$, where $e(3,K_k-e,n)$ is the minimum number of edges in any triangle-free graph on $n$ vertices without $K_k-e$ in the complement. We complete the computation of the exact values of $e(3,K_k-e,n)$ for all $n$ with $k \leq 10$ and for $n \leq 34$ with $k = 11$, and establish many new lower bounds on $e(3,K_k-e,n)$ for higher values of $k$.Using the maximum triangle-free graph generation method, we determine two other previously unknown Ramsey numbers, namely $R(3,K_{10}-K_3-e)=31$ and $R(3,K_{10}-P_3-e)=31$. For graphs $G$ on 10 vertices, besides $G=K_{10}$, this leaves 6 open cases of the form $R(3,G)$. The hardest among them appears to be $G=K_{10}-2K_2$, for which we establish the bounds $31 \le R(3,K_{10}-2K_2) \le 33$.



Author(s):  
Stefan A. Burr ◽  
Richard A. Duke

AbstractWe are interested here in the Ramsey number r(T, C), where C is a complete k-uniform hypergraph and T is a “tree-like” k-graph. Upper and lower bounds are found for these numbers which lead, in some cases, to the exact value for r(T, C) and to a generalization of a theorem of Chváta1 on Ramsey numbers for graphs. In other cases we show that a determination of the exact values of r(T, C) would be equivalent to obtaining a complete solution to existence question for a certain class of Steiner systems.



10.37236/7816 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Martin Balko ◽  
Josef Cibulka ◽  
Karel Král ◽  
Jan Kynčl

An ordered graph is a pair $\mathcal{G}=(G,\prec)$ where $G$ is a graph and $\prec$ is a total ordering of its vertices. The ordered Ramsey number $\overline{R}(\mathcal{G})$ is the minimum number $N$ such that every ordered complete graph with $N$ vertices and with edges colored by two colors contains a monochromatic copy of $\mathcal{G}$. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings $\mathcal{M}_n$ on $n$ vertices for which $\overline{R}(\mathcal{M}_n)$ is superpolynomial in $n$. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number $\overline{R}(\mathcal{G})$ is polynomial in the number of vertices of $\mathcal{G}$ if the bandwidth of $\mathcal{G}$ is constant or if $\mathcal{G}$ is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by Károlyi, Pach, Tóth, and Valtr.



2017 ◽  
Vol 15 (1) ◽  
pp. 393-397
Author(s):  
Izolda Gorgol

Abstract While defining the anti-Ramsey number Erdős, Simonovits and Sós mentioned that the extremal colorings may not be unique. In the paper we discuss the uniqueness of the colorings, generalize the idea of their construction and show how to use it to construct the colorings of the edges of complete split graphs avoiding rainbow 2-connected subgraphs. These colorings give the lower bounds for adequate anti-Ramsey numbers.



10.37236/2824 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Jan Goedgebeur ◽  
Stanisław P. Radziszowski

Using computational techniques we derive six new upper bounds on the classical two-color Ramsey numbers: $R(3,10) \le 42$, $R(3,11) \le 50$, $R(3,13) \le 68$, $R(3,14) \le 77$, $R(3,15) \le 87$, and $R(3,16) \le 98$. All of them are improvements by one over the previously best known bounds. Let $e(3,k,n)$ denote the minimum number of edges in any triangle-free graph on $n$ vertices without independent sets of order $k$. The new upper bounds on $R(3,k)$ are obtained by completing the computation of the exact values of $e(3,k,n)$ for all $n$ with $k \leq 9$ and for all $n \leq 33$ for $k = 10$, and by establishing new lower bounds on $e(3,k,n)$ for most of the open cases for $10 \le k \le 15$. The enumeration of all graphs witnessing the values of $e(3,k,n)$ is completed for all cases with $k \le 9$. We prove that the known critical graph for $R(3,9)$ on 35 vertices is unique up to isomorphism. For the case of $R(3,10)$, first we establish that $R(3,10)=43$ if and only if $e(3,10,42)=189$, or equivalently, that if $R(3,10)=43$ then every critical graph is regular of degree 9. Then, using computations, we disprove the existence of the latter, and thus show that $R(3,10) \le 42$.



Author(s):  
Luciana Arantes ◽  
Evripidis Bampis ◽  
Alexander Kononov ◽  
Manthos Letsios ◽  
Giorgio Lucarelli ◽  
...  

We consider a single machine, a set of unit-time jobs, and a set of unit-time errors. We assume that the time-slot at which each error will occur is not known in advance but, for every error, there exists an uncertainty area during which the error will take place. In order to find if the error occurs in a specific time-slot, it is necessary to issue a query to it. In this work, we study two problems: (i) the error-query scheduling problem, whose aim is to reveal enough error-free slots with the minimum number of queries, and (ii) the lexicographic error-query scheduling problem where we seek the earliest error-free slots with the minimum number of queries. We consider both the off-line and the on-line versions of the above problems. In the former, the whole instance and its characteristics are known in advance and we give a polynomial-time algorithm for the error-query scheduling problem. In the latter, the adversary has the power to decide, in an on-line way, the time-slot of appearance for each error. We propose then both lower bounds and algorithms whose competitive ratios asymptotically match these lower bounds.



2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Vojtěch Dvořák

Consider the following game between Builder and Painter. We take some families of graphs $\mathcal{G}_{1},\ldots,\mathcal{G}_t$ and an integer $n$ such that $n \geq R(\mathcal{G}_1,\ldots,\mathcal{G}_t)$. In each turn, Builder picks an edge of initially uncoloured $K_n$ and Painter colours that edge with some colour $i \in \left\{ 1,\ldots,t \right\}$ of her choice. The game ends when a graph $G_i$ in colour $i $ for some $G_i \in \mathcal{G}_i$ and some $i$ is created. The restricted online Ramsey number $\tilde{R}(\mathcal{G}_{1},\ldots,\mathcal{G}_t;n)$ is the minimum number of turns that Builder needs to guarantee the game to end. In a recent paper, Briggs and Cox studied the restricted online Ramsey numbers of matchings and determined a general upper bound for them. They proved that for $n=3r-1=R_2(r K_2)$ we have $\tilde{R}_{2}(r K_2;n) \leq n-1$ and asked whether this was tight. In this short note, we provide a general lower bound for these Ramsey numbers. As a corollary, we answer this question of Briggs and Cox, and confirm that for $n=3r-1$ we have $\tilde{R}_{2}(r K_2;n) = n-1$. We also show that for $n'=4r-2=R_3(r K_2)$ we have $\tilde{R}_{3}(r K_2;n') = 5r-4$.



10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.



Sign in / Sign up

Export Citation Format

Share Document