scholarly journals On the Codes Related to the Higman-Sims Graph

10.37236/4267 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Wolfgang Knapp ◽  
Hans-Jörg Schaeffer

All linear codes of length $100$ over a field $F$ which admit the Higman-Sims simple group HS in its rank $3$ representation are determined. By group representation theory it is proved that they can all be understood as submodules of the permutation module $F\Omega$ where $\Omega$ denotes the vertex set of the Higman-Sims graph. This module is semisimple if $\mathrm{char} F\neq 2,5$ and absolutely indecomposable otherwise. Also if $\mathrm{char} F \in \{2, 5\}$ the submodule lattice is determined explicitly. The binary case $F = \mathbb{F}_2$ is studied in detail under coding theoretic aspects. The HS-orbits in the subcodes of dimension $\leq 23$ are computed explicitly and so also the weight enumerators are obtained. The weight enumerators of the dual codes are determined by MacWilliams transformation. Two fundamental methods are used: Let $v$ be the endomorphism determined by an adjacency matrix. Then in $H_{22} = \mathrm{Im} v $ the HS-orbits are determined as $v$-images of certain low weight vectors in $F\Omega$ which carry some special graph configurations. The second method consists in using the fact that $H_{23}/H_{21}$ is a Klein four group under addition, if $H_{23}$ denotes the code generated by $H_{22}$ and a "Higman vector" $x(m)$ of weight 50 associated to a heptad $m$ in the shortened Golay code $G_{22}$, and $H_{21}$ denotes the doubly even subcode of $H_{22}\leq H_{78} = {H_{22}}^\perp$. Using the mentioned observation about $H_{23}/H_{21}$ and the results on the HS-orbits in $H_{23}$ a model of G. Higman's geometry is constructed, which leads to a direct geometric proof that G. Higman's simple group is isomorphic to HS. Finally, it is shown that almost all maximal subgroups of the Higman-Sims group can be understood as stabilizers in HS of codewords in $H_{23}$.


Author(s):  
Adel Alahmadi ◽  
Alaa Altassan ◽  
Widyan Basaffar ◽  
Hatoon Shoaib ◽  
Alexis Bonnecaze ◽  
...  

There is a special local ring [Formula: see text] of order [Formula: see text] without identity for the multiplication, defined by [Formula: see text] We study the algebraic structure of linear codes over that non-commutative local ring, in particular their residue and torsion codes. We introduce the notion of quasi self-dual codes over [Formula: see text] and Type IV codes, that is quasi self-dual codes whose all codewords have even Hamming weight. We study the weight enumerators of these codes by means of invariant theory, and classify them in short lengths.



2009 ◽  
Vol 08 (01) ◽  
pp. 105-114 ◽  
Author(s):  
LIANGCAI ZHANG ◽  
WUJIE SHI

Let G be a finite nonabelian group and associate a disoriented noncommuting graph ∇(G) with G as follows: the vertex set of ∇(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, J. G. Thompson gave the following conjecture.Thompson's Conjecture If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ≅ M, where N(G) denotes the set of the sizes of the conjugacy classes of G.In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture in [1] as follows.AAM's Conjecture Let M be a finite nonabelian simple group and G a group such that ∇(G)≅ ∇ (M). Then G ≅ M.Even though both of the two conjectures are known to be true for all finite simple groups with nonconnected prime graphs, it is still unknown for almost all simple groups with connected prime graphs. In the present paper, we prove that the second conjecture is true for the projective special unitary simple group U4(7).



Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).



2016 ◽  
Vol 9 (1) ◽  
pp. 133-149 ◽  
Author(s):  
Shudi Yang ◽  
Zheng-An Yao ◽  
Chang-An Zhao


2019 ◽  
Vol 12 (05) ◽  
pp. 1950081
Author(s):  
M. Jahandideh ◽  
R. Modabernia ◽  
S. Shokrolahi

Let [Formula: see text] be a non-abelian finite group and [Formula: see text] be the center of [Formula: see text]. The non-commuting graph, [Formula: see text], associated to [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. We conjecture that if [Formula: see text] is an almost simple group and [Formula: see text] is a non-abelian finite group such that [Formula: see text], then [Formula: see text]. Among other results, we prove that if [Formula: see text] is a certain almost simple group and [Formula: see text] is a non-abelian group with isomorphic non-commuting graphs, then [Formula: see text].



2015 ◽  
Vol 81 (1) ◽  
pp. 153-168 ◽  
Author(s):  
Chengju Li ◽  
Sunghan Bae ◽  
Jaehyun Ahn ◽  
Shudi Yang ◽  
Zheng-An Yao


2016 ◽  
Vol 82 (3) ◽  
pp. 663-674 ◽  
Author(s):  
Shudi Yang ◽  
Zheng-An Yao




Filomat ◽  
2014 ◽  
Vol 28 (5) ◽  
pp. 937-945 ◽  
Author(s):  
Suat Karadeniz ◽  
Bahattin Yildiz ◽  
Nuh Aydin

A classification of all four-circulant extremal codes of length 32 over F2 + uF2 is done by using four-circulant binary self-dual codes of length 32 of minimum weights 6 and 8. As Gray images of these codes, a substantial number of extremal binary self-dual codes of length 64 are obtained. In particular a new code with ?=80 in W64,2 is found. Then applying an extension method from the literature to extremal self-dual codes of length 64, we have found many extremal binary self-dual codes of length 66. Among those, five of them are new codes in the sense that codes with these weight enumerators are constructed for the first time. These codes have the values ?=1, 30, 34, 84, 94 in W66,1.



10.37236/9008 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Mustafa Gezek ◽  
Rudi Mathon ◽  
Vladimir D. Tonchev

In this paper we consider binary linear codes spanned by incidence matrices of Steiner 2-designs associated with maximal arcs in projective planes of even order, and their dual codes. Upper and lower bounds on the 2-rank of the incidence matrices are derived. A lower bound on the minimum distance of the dual codes is proved, and it is shown that the bound is achieved if and only if the related maximal arc contains a hyperoval of the plane. The  binary linear codes of length 52 spanned by the incidence matrices of 2-$(52,4,1)$ designs associated with previously known and some newly found maximal arcs of degree 4 in projective planes of order 16 are analyzed and classified up to equivalence. The classification shows that some designs associated with maximal arcs in nonisomorphic planes generate equivalent codes. This phenomenon establishes new links between several of the known planes. A conjecture concerning the codes of maximal arcs in $PG(2,2^m)$ is formulated.



Sign in / Sign up

Export Citation Format

Share Document