scholarly journals Cyclic Derangements

10.37236/435 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Sami H. Assaf

A classic problem in enumerative combinatorics is to count the number of derangements, that is, permutations with no fixed point. Inspired by a recent generalization to facet derangements of the hypercube by Gordon and McMahon, we generalize this problem to enumerating derangements in the wreath product of any finite cyclic group with the symmetric group. We also give $q$- and $(q,t)$-analogs for cyclic derangements, generalizing results of Gessel, Brenti and Chow.

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Jeffrey M. Riedl

We present a useful new characterization of the automorphisms of the regular wreath product group of a finite cyclic -group by a finite cyclic -group, for any prime , and we discuss an application. We also present a short new proof, based on representation theory, for determining the order of the automorphism group Aut(), where is the regular wreath product of a finite cyclic -group by an arbitrary finite -group.


1987 ◽  
Vol 39 (4) ◽  
pp. 969-982 ◽  
Author(s):  
Michel Boileau ◽  
Erica Flapan

In this paper we consider free actions of finite cyclic groups on the pair (S3, K), where K is a knot in S3. That is, we look at periodic diffeo-morphisms f of (S3, K) such that fn is fixed point free, for all n less than the order of f. Note that such actions are always orientation preserving. We will show that if K is a non-trivial prime knot then, up to conjugacy, (S3, K) has at most one free finite cyclic group action of a given order. In addition, if all of the companions of K are prime, then all of the free periodic diffeo-morphisms of (S3, K) are conjugate to elements of one cyclic group which acts freely on (S3, K). More specifically, we prove the following two theorems.THEOREM 1. Let K be a non-trivial prime knot. If f and g are free periodic diffeomorphisms of (S3, K) of the same order, then f is conjugate to a power of g.


2013 ◽  
Vol 2013 ◽  
pp. 1-17
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel ◽  
Manda Riehl

We continue the study of the generalized pattern avoidance condition for Ck≀Sn, the wreath product of the cyclic group Ck with the symmetric group Sn, initiated in the work by Kitaev et al., In press. Among our results, there are a number of (multivariable) generating functions both for consecutive and nonconsecutive patterns, as well as a bijective proof for a new sequence counted by the Catalan numbers.


2008 ◽  
Vol 18 (04) ◽  
pp. 705-717
Author(s):  
KENNETH ZIMBA ◽  
MERIAM RABOSHAKGA

The conjugacy classes of any group are important since they reflect some aspects of the structure of the group. The construction of the conjugacy classes of finite groups has been a subject of research for several authors. Let n,m be positive integers and [Formula: see text] be the direct product of m copies of the symmetric group Sn of degree n. Then [Formula: see text] is a subgroup of the symmetric group Smn of degree m × n. Let g∈Smn, of type [mn] where each m-cycle contains one symbol from each set of symbols in that order on which the copies of Sn act. Then g permutes the elements of the copies of Sn in [Formula: see text] and generates a cyclic group Cm = 〈g〉 of order m. The wreath product of Sn with Cm is a split extension or semi-direct product of [Formula: see text] by Cm, denoted by [Formula: see text]. It is clear that [Formula: see text] is a subgroup of the symmetric group Smn. In this paper we give a method similar to coset analysis for constructing the conjugacy classes of [Formula: see text], where m is prime. Apart from the fact that this is an alternative method for constructing the conjugacy classes of the group [Formula: see text], this method is useful in the construction of Fischer–Clifford matrices of the group [Formula: see text]. These Fischer–Clifford matrices are useful in the construction of the character table of [Formula: see text].


2021 ◽  
Author(s):  
Ryszard Mazurek

AbstractFor any commutative semigroup S and positive integer m the power function $$f: S \rightarrow S$$ f : S → S defined by $$f(x) = x^m$$ f ( x ) = x m is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
K. Mageshwaran ◽  
G. Kalaimurugan ◽  
Bussakorn Hammachukiattikul ◽  
Vediyappan Govindan ◽  
Ismail Naci Cangul

An L h , k -labeling of a graph G = V , E is a function f : V ⟶ 0 , ∞ such that the positive difference between labels of the neighbouring vertices is at least h and the positive difference between the vertices separated by a distance 2 is at least k . The difference between the highest and lowest assigned values is the index of an L h , k -labeling. The minimum number for which the graph admits an L h , k -labeling is called the required possible index of L h , k -labeling of G , and it is denoted by λ k h G . In this paper, we obtain an upper bound for the index of the L h , k -labeling for an inverse graph associated with a finite cyclic group, and we also establish the fact that the upper bound is sharp. Finally, we investigate a relation between L h , k -labeling with radio labeling of an inverse graph associated with a finite cyclic group.


Author(s):  
Martsinkevich Anna V.

Let P be the set of all primes, Zn a cyclic group of order n and X wr Zn the regular wreath product of the group X with Zn. A Fitting class F is said to be X-quasinormal (or quasinormal in a class of groups X ) if F ⊆ X, p is a prime, groups G ∈ F and G wr Zp ∈ X, then there exists a natural number m such that G m wr Zp ∈ F. If  X is the class of all soluble groups, then F is normal Fitting class. In this paper we generalize the well-known theorem of Blessenohl and Gaschütz in the theory of normal Fitting classes. It is proved, that the intersection of any set of nontrivial X-quasinormal Fitting classes is a nontrivial X-quasinormal Fitting class. In particular, there exists the smallest nontrivial X-quasinormal Fitting class. We confirm a generalized version of the Lockett conjecture (in particular, the Lockett conjecture) about the structure of a Fitting class for the case of X-quasinormal classes, where X is a local Fitting class of partially soluble groups.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050040 ◽  
Author(s):  
Sriparna Chattopadhyay ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a given finite group [Formula: see text] is the simple undirected graph whose vertices are the elements of [Formula: see text], in which two distinct vertices are adjacent if and only if one of them can be obtained as an integral power of the other. The vertex connectivity [Formula: see text] of [Formula: see text] is the minimum number of vertices which need to be removed from [Formula: see text] so that the induced subgraph of [Formula: see text] on the remaining vertices is disconnected or has only one vertex. For a positive integer [Formula: see text], let [Formula: see text] be the cyclic group of order [Formula: see text]. Suppose that the prime power decomposition of [Formula: see text] is given by [Formula: see text], where [Formula: see text], [Formula: see text] are positive integers and [Formula: see text] are prime numbers with [Formula: see text]. The vertex connectivity [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [Panda and Krishna, On connectedness of power graphs of finite groups, J. Algebra Appl. 17(10) (2018) 1850184, 20 pp, Chattopadhyay, Patra and Sahoo, Vertex connectivity of the power graph of a finite cyclic group, to appear in Discr. Appl. Math., https://doi.org/10.1016/j.dam.2018.06.001]. In this paper, for [Formula: see text], we give a new upper bound for [Formula: see text] and determine [Formula: see text] when [Formula: see text]. We also determine [Formula: see text] when [Formula: see text] is a product of distinct prime numbers.


2019 ◽  
Vol 28 (11) ◽  
pp. 1940006
Author(s):  
Nafaa Chbili ◽  
Hajer Jebali

Extended strongly periodic links have been introduced by Przytycki and Sokolov as a symmetric surgery presentation of three-manifolds on which the finite cyclic group acts without fixed points. The purpose of this paper is to prove that the symmetry of these links is reflected by the first coefficients of the HOMFLYPT polynomial.


Sign in / Sign up

Export Citation Format

Share Document