scholarly journals Universal and Near-Universal Cycles of Set Partitions

10.37236/5051 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Zach Higgins ◽  
Elizabeth Kelley ◽  
Bertilla Sieben ◽  
Anant Godbole

We study universal cycles of the set $\mathcal{P}(n,k)$ of $k$-partitions of the set $[n]:=\{1,2,\ldots,n\}$ and prove that the transition digraph associated with $\mathcal{P}(n,k)$ is Eulerian. But this does not imply that universal cycles (or ucycles) exist, since vertices represent equivalence classes of partitions. We use this result to prove, however, that ucycles of $\mathcal{P}(n,k)$ exist for all $n \geq 3$ when $k=2$. We reprove that they exist for odd $n$ when $k = n-1$ and that they do not exist for even $n$ when $k = n-1$. An infinite family of $(n,k)$ for which ucycles do not exist is shown to be those pairs for which ${{n-2}\brace{k-2}}$ is odd ($3 \leq k < n-1$). We also show that there exist universal cycles of partitions of $[n]$ into $k$ subsets of distinct sizes when $k$ is sufficiently smaller than $n$, and therefore that there exist universal packings of the partitions in $\mathcal{P}(n,k)$. An analogous result for coverings completes the investigation.  

1976 ◽  
Vol 28 (1) ◽  
pp. 161-167 ◽  
Author(s):  
José M. Montesinos

Letdenote the 2-fold cyclic covering space branched over a linkLin S3. We wish to describe an infinite family of prime knots and links in which each memberLexhibits two minimal 6-plat representations, where the associated Heegaard splittings ofare minimal and inequivalent. Thus each knot or link of that family admits at least two equivalence classes of 6-plat representations which are minimal.


10.37236/2976 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize $3$-crossings and $3$-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards.We enumerate $312$-avoiding matchings and partitions, obtaining algebraic generating functions, in contrast with the known D-finite generating functions for the $321$-avoiding (i.e., $3$-noncrossing) case. Our approach provides a more direct proof of a formula of Bóna for the number of $1342$-avoiding permutations. We also give a bijective proof of the shape-Wilf-equivalence of the patterns $321$ and $213$ which greatly simplifies existing proofs by Backelin-West-Xin and Jelínek, and provides an extension of work of Gouyou-Beauchamps for matchings with fixed points. Finally, we classify pairs of patterns of length 3 according to shape-Wilf-equivalence, and enumerate matchings and partitions avoiding a pair in most of the resulting equivalence classes.


Author(s):  
Scott Atkinson ◽  
Srivatsav Kunnawalkam Elayavalli

Abstract We define the notion of self-tracial stability for tracial von Neumann algebras and show that a tracial von Neumann algebra satisfying the Connes embedding problem (CEP) is self-tracially stable if and only if it is amenable. We then generalize a result of Jung by showing that a separable tracial von Neumann algebra that satisfies the CEP is amenable if and only if any two embeddings into $R^{\mathcal{U}}$ are ucp-conjugate. Moreover, we show that for a II$_1$ factor $N$ satisfying CEP, the space $\mathbb{H}$om$(N, \prod _{k\to \mathcal{U}}M_k)$ of unitary equivalence classes of embeddings is separable if and only $N$ is hyperfinite. This resolves a question of Popa for Connes embeddable factors. These results hold when we further ask that the pairs of embeddings commute, admitting a nontrivial action of $\textrm{Out}(N\otimes N)$ on ${\mathbb{H}}\textrm{om}(N\otimes N, \prod _{k\to \mathcal{U}}M_k)$ whenever $N$ is non-amenable. We also obtain an analogous result for commuting sofic representations of countable sofic groups.


2013 ◽  
Vol 34 (6) ◽  
pp. 1832-1848 ◽  
Author(s):  
ALBERT M. FISHER ◽  
THOMAS A. SCHMIDT

AbstractWe give a new proof of Moeckel’s result that for any finite index subgroup of the modular group, almost every real number has its regular continued fraction approximants equidistributed into the cusps of the subgroup according to the weighted cusp widths. Our proof uses a skew product over a cross-section for the geodesic flow on the modular surface. Our techniques show that the same result holds true for approximants found by Nakada’s $\alpha $-continued fractions, and also that the analogous result holds for approximants that are algebraic numbers given by any of Rosen’s $\lambda $-continued fractions, related to the infinite family of Hecke triangle Fuchsian groups.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Connor Behan ◽  
Pietro Ferrero ◽  
Xinan Zhou

Abstract Recently four-point holographic correlators with arbitrary external BPS operators were constructively derived in [1, 2] at tree-level for maximally superconformal theories. In this paper, we capitalize on these theoretical data, and perform a detailed study of their analytic properties. We point out that these maximally supersymmetric holographic correlators exhibit a hidden dimensional reduction structure à la Parisi and Sourlas. This emergent structure allows the correlators to be compactly expressed in terms of only scalar exchange diagrams in a dimensionally reduced spacetime, where formally both the AdS and the sphere factors have four dimensions less. We also demonstrate the superconformal properties of holographic correlators under the chiral algebra and topological twistings. For AdS5× S5 and AdS7× S4, we obtain closed form expressions for the meromorphic twisted correlators from the maximally R-symmetry violating limit of the holographic correlators. The results are compared with independent field theory computations in 4d $$ \mathcal{N} $$ N = 4 SYM and the 6d (2, 0) theory, finding perfect agreement. For AdS4× S7, we focus on an infinite family of near-extremal four-point correlators, and extract various protected OPE coefficients from supergravity. These OPE coefficients provide new holographic predictions to be matched by future supersymmetric localization calculations. In deriving these results, we also develop many technical tools which should have broader applicability beyond studying holographic correlators.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yolanda Lozano ◽  
Carlos Nunez ◽  
Anayeli Ramirez

Abstract We present a new infinite family of Type IIB supergravity solutions preserving eight supercharges. The structure of the space is AdS2 × S2 × CY2 × S1 fibered over an interval. These solutions can be related through double analytical continuations with those recently constructed in [1]. Both types of solutions are however dual to very different superconformal quantum mechanics. We show that our solutions fit locally in the class of AdS2 × S2 × CY2 solutions fibered over a 2d Riemann surface Σ constructed by Chiodaroli, Gutperle and Krym, in the absence of D3 and D7 brane sources. We compare our solutions to the global solutions constructed by Chiodaroli, D’Hoker and Gutperle for Σ an annulus. We also construct a cohomogeneity-two family of solutions using non-Abelian T-duality. Finally, we relate the holographic central charge of our one dimensional system to a combination of electric and magnetic fluxes. We propose an extremisation principle for the central charge from a functional constructed out of the RR fluxes.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jördis-Ann Schüler ◽  
Steffen Rechner ◽  
Matthias Müller-Hannemann

AbstractAn important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper, we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equivalence classes and an effective equivalence test. Based on extensive computational experiments, we show that our algorithm is significantly faster than existing implementations within , and . We provide our Java implementation as an easy-to-use, open-source package (via GitHub) which is compatible with . It fully supports the distinction of different isotopes and molecules with radicals.


2013 ◽  
Vol 27 (3) ◽  
pp. 1360-1371 ◽  
Author(s):  
Victoria Horan ◽  
Glenn Hurlbert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document