scholarly journals On Certain Combinatorial Expansions of the Legendre-Stirling Numbers

10.37236/8060 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Shi-Mei Ma ◽  
Jun Ma ◽  
Yeong-Nan Yeh

The Legendre-Stirling numbers of the second kind were introduced by Everitt et al. in the spectral theory of powers of the Legendre differential expressions. As a continuation of the work of Andrews and Littlejohn (Proc. Amer. Math. Soc., 137 (2009), 2581-2590), we provide a combinatorial code for Legendre-Stirling set partitions. As an application, we obtain expansions of the Legendre-Stirling numbers of both kinds in terms of binomial coefficients.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Irem Kucukoglu ◽  
Burcin Simsek ◽  
Yilmaz Simsek

The aim of this paper is to construct generating functions for new families of combinatorial numbers and polynomials. By using these generating functions with their functional and differential equations, we not only investigate properties of these new families, but also derive many new identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson–Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind). Finally, we give some remarks and observations on our results related to some probability distributions such as the binomial distribution and the Poisson distribution.



2005 ◽  
Vol 2005 (3) ◽  
pp. 451-463 ◽  
Author(s):  
Augustine O. Munagi

Partitions of the set{1,2,…,n}are classified as having successions if a block contains consecutive integers, and separated otherwise. This paper constructs enumeration formulas for such set partitions and some variations using Stirling numbers of the second kind.





10.37236/560 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Xun-Tuan Su ◽  
Yi Wang ◽  
Yeong-Nan Yeh

In this note we consider unimodality problems of sequences of multinomial coefficients and symmetric functions. The results presented here generalize our early results for binomial coefficients. We also give an answer to a question of Sagan about strong $q$-log-concavity of certain sequences of symmetric functions, which can unify many known results for $q$-binomial coefficients and $q$-Stirling numbers of two kinds.



10.37236/2131 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Pietro Mongelli

The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling numbers are specializations of elementary and complete symmetric functions. We then study combinatorial interpretations of this specialization and obtain new combinatorial  interpretations of the Jacobi-Stirling and Legendre-Stirling numbers.



Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1436
Author(s):  
Talha Usman ◽  
Mohd Saif ◽  
Junesang Choi

The q-Stirling numbers (polynomials) of the second kind have been investigated and applied in a variety of research subjects including, even, the q-analogue of Bernstein polynomials. The (p,q)-Stirling numbers (polynomials) of the second kind have been studied, particularly, in relation to combinatorics. In this paper, we aim to introduce new (p,q)-Stirling polynomials of the second kind which are shown to be fit for the (p,q)-analogue of Bernstein polynomials. We also present some interesting identities involving the (p,q)-binomial coefficients. We further discuss certain vanishing identities associated with the q-and (p,q)-Stirling polynomials of the second kind.



2010 ◽  
Vol 4 (2) ◽  
pp. 284-308 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Stephan Wagner

A partition ? of the set [n] = {1, 2,...,n} is a collection {B1,...,Bk} of nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. Suppose that the subsets Bi are listed in increasing order of their minimal elements and ? = ?1, ?2...?n denotes the canonical sequential form of a partition of [n] in which iEB?i for each i. In this paper, we study the generating functions corresponding to statistics on the set of partitions of [n] with k blocks which record the total number of positions of ? between adjacent occurrences of a letter. Among our results are explicit formulas for the total value of the statistics over all the partitions in question, for which we provide both algebraic and combinatorial proofs. In addition, we supply asymptotic estimates of these formulas, the proofs of which entail approximating the size of certain sums involving the Stirling numbers. Finally, we obtain comparable results for statistics on partitions which record the total number of positions of ? of the same letter lying between two letters which are strictly larger.





10.37236/3787 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Claudio de J. Pita-Ruiz V.

We work with a generalization of Stirling numbers of the second kind related to the boson normal ordering problem (P. Blasiak et al.). We show that these numbers appear as part of the coefficients of expressions in which certain sequences of products of binomials, together with their partial sums, are written as linear combinations of some other binomials. We show that the number arrays formed by these coefficients can be seen as natural generalizations of Pascal and Lucas triangles, since many of the known properties on rows, columns, falling diagonals and rising diagonals in Pascal and Lucas triangles, are also valid (some natural generalizations of them) in the arrays considered in this work. We also show that certain closed formulas for hyper-sums of powers of binomial coefficients appear in a natural way in these arrays.



Sign in / Sign up

Export Citation Format

Share Document