scholarly journals Grundy Domination of Forests and the Strong Product Conjecture

10.37236/9507 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Kayla Bell ◽  
Keith Driscoll ◽  
Elliot Krop ◽  
Kimber Wolff

A maximum sequence $S$ of vertices in a graph $G$, so that every vertex in $S$ has a neighbor which is independent, or is itself independent, from all previous vertices in $S$, is called a Grundy dominating sequence. The Grundy domination number, $\gamma_{gr}(G)$, is the length of $S$. We show that for any forest $F$, $\gamma_{gr}(F)=|V(T)|-|\mathcal{P}|$ where $\mathcal{P}$ is a minimum partition of the non-isolate vertices of $F$ into caterpillars in which if two caterpillars of $\mathcal{P}$ have an edge between them in $F$, then such an edge must be incident to a non-leaf vertex in at least one of the caterpillars. We use this result to show the strong product conjecture of B. Brešar, Cs. Bujtás, T. Gologranc, S. Klavžar, G. Košmrlj, B.~Patkós, Zs. Tuza, and M. Vizer, Dominating sequences in grid-like and toroidal graphs, Electron. J. Combin. 23(4): P4.34 (2016), for all forests. Namely, we show that for any forest $G$ and graph $H$, $\gamma_{gr}(G \boxtimes H) = \gamma_{gr}(G) \gamma_{gr}(H)$. We also show that every connected graph $G$ has a spanning tree $T$ so that $\gamma_{gr}(G)\le \gamma_{gr}(T)$ and that every non-complete connected graph contains a Grundy dominating set $S$ so that the induced subgraph of $S$ contains no isolated vertices. 

2020 ◽  
Vol 12 (04) ◽  
pp. 2050043
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph [Formula: see text] is called a geodetic set if every vertex not in [Formula: see text] lies on a shortest path between two vertices from [Formula: see text]. A set [Formula: see text] of vertices in [Formula: see text] is called a dominating set of [Formula: see text] if every vertex not in [Formula: see text] has at least one neighbor in [Formula: see text]. A set [Formula: see text] is called a geodetic global dominating set of [Formula: see text] if [Formula: see text] is both geodetic and global dominating set of [Formula: see text]. The geodetic global domination number is the minimum cardinality of a geodetic global dominating set in [Formula: see text]. In this paper, we determine the geodetic global domination number of the corona and strong products of two graphs.


2012 ◽  
Vol 43 (4) ◽  
pp. 557-562 ◽  
Author(s):  
Kulandai Vel M.P. ◽  
Selvaraju P. ◽  
Sivagnanam C.

Let $G = (V, E)$ be a connected graph. A set $S$ of vertices in $G$ is a perfect dominating set if every vertex $v$ in $V-S$ is adjacent to exactly one vertex in $S$. A perfect dominating set $S$ is said to be a neighborhood connected perfect dominating set (ncpd-set) if the induced subgraph $$ is connected. The minimum cardinality of a ncpd-set of $G$ is called the neighborhood connected perfect domination number of $G$ and is denoted by $\gamma_{ncp}(G)$. In this paper we initiate a study of this parameter.


2012 ◽  
Vol 43 (1) ◽  
pp. 69-80
Author(s):  
Kulandaivel M.P. ◽  
C. Sivagnanam ◽  
P. Selvaraju

Let G = (V,E) be a connected graph. An edge dominating set X of G is called a neighborhood connected edge dominating set (nced-set) if the edge induced subgraph < N(X) > is connected. The minimum cardinality of a nced-set of G is called the neighborhood connected edge domination number of G and is denoted by. In this paper we initiate a study of this parameter.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


Author(s):  
Reynaldo V. Mollejon ◽  
Sergio R. Canoy

Let [Formula: see text] be a connected graph of order [Formula: see text]. A subset [Formula: see text] is a double hop dominating set (or a double [Formula: see text]-step dominating set) if [Formula: see text], where [Formula: see text], for each [Formula: see text]. The smallest cardinality of a double hop dominating set of [Formula: see text], denoted by [Formula: see text], is the double hop domination number of [Formula: see text]. In this paper, we investigate the concept of double hop dominating sets and study it for graphs resulting from some binary operations.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750069 ◽  
Author(s):  
R. Vasanthi ◽  
K. Subramanian

Let [Formula: see text] be a simple and connected graph. A dominating set [Formula: see text] is said to be a vertex covering transversal dominating set if it intersects every minimum vertex covering set of [Formula: see text]. The vertex covering transversal domination number [Formula: see text] is the minimum cardinality among all vertex covering transversal dominating sets of [Formula: see text]. A vertex covering transversal dominating set of minimum cardinality [Formula: see text] is called a minimum vertex covering transversal dominating set or simply a [Formula: see text]-set. In this paper, we prove some general theorems on the vertex covering transversal domination number of a simple connected graph. We also provide some results about [Formula: see text]-sets and try to classify those sets based on their intersection with the minimum vertex covering sets.


2020 ◽  
Vol 39 (6) ◽  
pp. 1627-1647
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph G = (V, E) is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbor in D. A set D is called a global dominating set in G if S is a dominating set of both G and Ḡ. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. A geodetic global dominating set S in G is called a minimal geodetic global dominating set if no proper subset of S is itself a geodetic global dominating set in G. The maximum cardinality of a minimal geodetic global dominating set in G is the upper geodetic global domination number Ῡg+(G) of G. In this paper, the upper geodetic global domination number of certain connected graphs are determined and some of the general properties are studied. It is proved that for all positive integers a, b, p where 3 ≤ a ≤ b < p, there exists a connected graph G such that Ῡg(G) = a, Ῡg+(G) = b and |V (G)| = p.


2021 ◽  
Vol 14 (3) ◽  
pp. 1015-1023
Author(s):  
Jerson Saguin Mohamad ◽  
Helen M. Rara

A set S of vertices in a connected graph G is a resolving hop dominating set of G if S is a resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the resolving hop domination number of G. This paper presents the characterizations of the resolving hop dominating sets in the join, corona and lexicographic product of two graphs and determines the exact values of their corresponding resolving hop domination number.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


Sign in / Sign up

Export Citation Format

Share Document