Effects of Nitrogen Fertilization on Chlorophyll Fluorescence Parameters of Flag Leaf and Grain Filling in Winter Wheat Suffered Waterlogging at Booting Stage

2013 ◽  
Vol 38 (6) ◽  
pp. 1088-1096 ◽  
Author(s):  
Wen-Ming WU ◽  
Hong-Jian CHEN ◽  
Jin-Cai LI ◽  
Feng-Zhen WEI ◽  
Shi-Ji WANG ◽  
...  
2011 ◽  
Vol 37 (10) ◽  
pp. 1888-1896
Author(s):  
Wen-Ming WU ◽  
Jin-Cai LI ◽  
Hong-Jian CHEN ◽  
Feng-Zhen WEI ◽  
Shi-Ji WANG

2006 ◽  
Vol 39 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Marie KUMMEROVÁ ◽  
štěpán ZEZULKA ◽  
Jana KRULOVÁ ◽  
Jan TŘÍSKA

The effect of increasing concentrations (0·01, 0·1, 1 and 5 mg l−1) of intact (FLT) and photo-modified (phFLT) fluoranthene and the duration of exposure (1, 2, 3, 5 and 7 days) on the chlorophyll fluorescence parameters (F0, FV/FM, and ΦII) of symbiotic algae in the thalli of two foliose lichens Lasallia pustulata and Umbilicaria hirsuta was investigated. In addition the FLT concentration in thalli of both lichen species was determined and a bioconcentration factor (BCF) was calculated. The results obtained demonstrated that the concentrations of FLT and especially phFLT (1 and 5 mg l−1) applied affected primary photochemical processes of photosynthesis in the algae of both lichen species. The F0 value increased and the FV/FM and ΦII values decreased. The fluoranthene content in the thallus of both lichen species increased with increasing FLT concentration in the environment.


Author(s):  
Guotao Peng ◽  
Zhengqiu Fan ◽  
Xiangrong Wang ◽  
Chen Chen

<p>The frequent outbreak of cyanobacterial blooms has become a worldwide phenomenon in freshwater ecosystems. Studies have elucidated the close relationship between harmful algal blooms and nutrient contents, including the loading of nitrogen and the ratios of nitrogen (N) and phosphorus (P). In this study, the effect of inorganic (nitrate and ammonium) and organic (urea) nitrogen at varied N/P ratios on the <em>Microcystis</em> <em>aeruginosa</em> FACHB-905 accumulation and photosynthesis was investigated.  The optimal NO<sub>3</sub>/P in this study were 30~50 indicated by the cell abundance (4.1×10<sup>6</sup>/mL), pigment concentration (chlorophyll a 3.1 mg/L,  phycocyanin 8.3mg/L), and chlorophyll fluorescence parameters (<em>rETR</em>, <em>E<sub>k</sub>, α, φPSII</em> and <em>F<sub>v</sub>/F<sub>m</sub> </em>values), while too high NO<sub>3</sub>-N (N/P=100:1) would cause an intracellular nitrate inhibition, leading to a decrease of photosynthetic activity. In addition, low concentration of NH<sub>4</sub>-N (N/P=4:1) would favor the <em>M. aeruginosa </em>growth and photosynthesis, and high NH<sub>4</sub>/P ratio (&gt;16) would rise the ammonium toxicity of algal cells and affect the N assimilation. In urea treatments, <em>M. aeruginosa </em>responded similarly to the NH<sub>4</sub>-N treatments both in growth curves and pigment contents, and the favorable N/P ratio was between 16~30, suggested by the chlorophyll fluorescence parameters. The results demonstrated that the various chemical forms of N and N/P ratios have a significant impact on <em>Microcystis</em> abundance and photosynthesis. More work is needed to figure out the mechanism of nitrogen utilization by <em>Microcystis</em> and  the photosynthetic response to nutrient stress at the molecular level.</p>


2011 ◽  
Vol 52 (No. 8) ◽  
pp. 377-384 ◽  
Author(s):  
J. Haberle ◽  
P. Svoboda ◽  
J. Krejčová

The apparent uptake of mineral nitrogen (N<sub>min</sub>) from top- and subsoil layers during the growth of winter wheat (Triticum aestivum L.) was studied in Prague-Ruzyne on clay loam Chernozem soil in years 1996&ndash;2003. Two (N0,&nbsp;N1) and three treatments, unfertilized (N0), fertilized with 100 kg (N1) and 200 kg (N2) nitrogen per hectare were observed in years 1996&ndash;2000 and 2001&ndash;2003, respectively. The apparent uptake of nitrogen from soil layers was calculated from the changes of N<sub>min</sub> content between sampling terms. Most of available mineral N in the soil down to 90 cm was almost fully depleted between tillering and anthesis in treatment N0. The uptake from subsoil layers was delayed and it continued during the period of grain filling in fertilized treatments. Nitrogen fertilization reduced utilization of N from subsoil. The apparent uptake of N from the zone 50&ndash;120 cm ranged from 21 to 62&nbsp;kg&nbsp;N/ha in&nbsp;N0 and from 15 to 60 kg N/ha in N1 in years 1996&ndash;2000. In years 2001&ndash;2003 the corresponding values (50&ndash;130&nbsp;cm) were 24&ndash;104 kg, 43&ndash;130 kg and 29&ndash;94 kg N/ha in treatments N0, N1 and N2, respectively. The uptake from 120&nbsp;(130)&ndash;150 cm was around zero in a half of experimental years, and it reached at maximum 12 kg/ha in N0 in 1997. There was a strong linear relation between the amount of N<sub>min</sub> in spring and the depletion of nitrogen from the zone 50&ndash;120 (130) cm, R<sup>2 </sup>= 0.94, 0.91 and 0.99 in N0, N1 and N2, respectively.


Sign in / Sign up

Export Citation Format

Share Document