fully depleted
Recently Published Documents


TOTAL DOCUMENTS

1278
(FIVE YEARS 127)

H-INDEX

44
(FIVE YEARS 5)

Author(s):  
Ziqiang Xie ◽  
Weifeng Lyu ◽  
Mengxue Guo ◽  
Mengjie Zhao

Abstract A negative capacitance transistor (NCFET) with fully depleted silicon-on-insulator (FDSOI) technology (NC-FDSOI) is one of the promising candidates for next-generation low-power devices. However, it suffers from the inherent negative differential resistance (NDR) effect, which is very detrimental to device and circuit designs. Aiming at overcoming this shortcoming, this paper proposes for the first time to use local Gaussian heavy doping technology (LoGHeD) in the channel near the drain side to suppress the NDR effect in the NC-FDSOI. The technical computer-aided design (TCAD) simulation results have validated that the output conductance (GDS) with LoGHeD, which is used to measure the NDR effect, increases compared to the conventional NC-FDSOI counterpart and approaches zero. With the increase in doping concentration, the inhibitory capability of the NDR effect shows a monotonously increasing trend. In addition, the proposed approach maintains and even enhances performances of the NC-FDSOI transistor regarding the electrical parameters, such as threshold voltage (VTH), sub-threshold swing (SS), switching current ratio (ION/IOFF), and drain-induced barrier lowering (DIBL).


Author(s):  
Qianshu Wu ◽  
Jia Chen ◽  
Liang He ◽  
Jinwei Zhang ◽  
Qiuling Qiu ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 187
Author(s):  
Taiki Kataoka ◽  
Yusaku Magari ◽  
Hisao Makino ◽  
Mamoru Furuta

We successfully demonstrated a transition from a metallic InOx film into a nondegenerate semiconductor InOx:H film. A hydrogen-doped amorphous InOx:H (a-InOx:H) film, which was deposited by sputtering in Ar, O2, and H2 gases, could be converted into a polycrystalline InOx:H (poly-InOx:H) film by low-temperature (250 °C) solid-phase crystallization (SPC). Hall mobility increased from 49.9 cm2V−1s−1 for an a-InOx:H film to 77.2 cm2V−1s−1 for a poly-InOx:H film. Furthermore, the carrier density of a poly-InOx:H film could be reduced by SPC in air to as low as 2.4 × 1017 cm−3, which was below the metal–insulator transition (MIT) threshold. The thin film transistor (TFT) with a metallic poly-InOx channel did not show any switching properties. In contrast, that with a 50 nm thick nondegenerate poly-InOx:H channel could be fully depleted by a gate electric field. For the InOx:H TFTs with a channel carrier density close to the MIT point, maximum and average field effect mobility (μFE) values of 125.7 and 84.7 cm2V−1s−1 were obtained, respectively. We believe that a nondegenerate poly-InOx:H film has great potential for boosting the μFE of oxide TFTs.


Author(s):  
Hongkuan Yu ◽  
Tomoko Mizutani ◽  
Kiyoshi Takeuchi ◽  
Takuya Saraya ◽  
Masaharu Kobayashi ◽  
...  

Abstract Minimum operating voltages (Vmin) of every cell on a 32kb fully-depleted (FD) SOI static random access memory (SRAM) macro are successfully measured. The competing Vmin distribution models, which include the gamma and log-normal distribution, are approximated using the generalized gamma distribution (GENG). It is found that Vmin of the cells follow the gamma distribution. This finding gives a simple method to estimate worst Vmin of an SRAM macro by measuring few samples and make linear extrapolation from the gamma distribution.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1540
Author(s):  
Sorin Cristoloveanu ◽  
Joris Lacord ◽  
Sébastien Martinie ◽  
Carlos Navarro ◽  
Francisco Gamiz ◽  
...  

This paper reviews the recently-developed class of band-modulation devices, born from the recent progress in fully-depleted silicon-on-insulator (FD-SOI) and other ultrathin-body technologies, which have enabled the concept of gate-controlled electrostatic doping. In a lateral PIN diode, two additional gates can construct a reconfigurable PNPN structure with unrivalled sharp-switching capability. We describe the implementation, operation, and various applications of these band-modulation devices. Physical and compact models are presented to explain the output and transfer characteristics in both steady-state and transient modes. Not only can band-modulation devices be used for quasi-vertical current switching, but they also show promise for compact capacitorless memories, electrostatic discharge (ESD) protection, sensing, and reconfigurable circuits, while retaining full compatibility with modern silicon processing and standard room-temperature low-voltage operation.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 564
Author(s):  
He Zhu ◽  
Jiafeng Liu ◽  
Hong Zhu ◽  
Yunlong Huai ◽  
Meng Li ◽  
...  

High operating temperature mid-wavelength InAs/GaSb superlattice infrared photodetectors with a single heterojunction structure grown by metal–organic chemical vapor deposition are reported. By inserting a fully-depleted wider-gap barrier layer between the absorber and the p-contact, “diffusion-limited” behavior has been achieved for the heterojunction “PNn” device, in contrast to the conventional pin homojunction device. The PNn device with a 50% cutoff wavelength of 4.5 μm exhibited a dark current of 2.05 × 10−4 A/cm2 and a peak specific detectivity of 1.28 × 1011 cm·Hz·W−1 at 150 K and a reverse bias of −0.1 V.


Author(s):  
Takuma NANJO ◽  
takashi Imazawa ◽  
Akira Kiyoi ◽  
Tetsuro Hayashida ◽  
Tatsuro WATAHIKI ◽  
...  

Abstract An extrinsic electron induced by a dielectric (EID) AlGaN/GaN MOS high-electron-mobility transistor (HEMT) on Si substrate was designed and investigated. The EID structure with SiO2 deposition and subsequent high-temperature annealing, which induces two-dimensional electron gases (2DEGs) on fully depleted AlGaN/GaN hetero-epitaxial layers with thin AlGaN barrier layer, was applied to access and drift regions in the HEMT. The fabricated HEMT exhibited enhancement-mode operation with a specific on-resistance of 7.6 mΩcm2 and a breakdown voltage of over 1 kV. In addition, electron state analysis using hard X-ray photoelectron spectroscopy revealed that changes in the chemical states of Al and energy level lowering at the SiO2/AlGaN interface affect the induction of 2DEG in the EID structure. The proposed HEMTs should become a strong candidate for highly reliable high-power switching devices due to the damage-less fabrication without dry etching or fluorine plasma exposure processes on the semiconductor layers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Coralie Neubüser ◽  
T. Corradino ◽  
G-F. Dalla Betta ◽  
L. De Cilladi ◽  
L. Pancheri

Fully depleted monolithic active pixel sensors (FD-MAPSs) represent a state-of-the-art detector technology and profit from a low material budget and cost for high-energy physics experiments and other fields of research like medical imaging and astro-particle physics. Compared to the MAPS currently in use, fully depleted pixel sensors have the advantage of charge collection by drift, which enables a fast and uniform response overall to the pixel matrix. The functionality of these devices has been shown in previous proof-of-concept productions. In this article, we describe the optimization of the test pixel designs that will be implemented in the first engineering run of the demonstrator chip of the ARCADIA project. These optimization procedures include radiation damage models that have been employed in Technology Computer Aided Design simulations to predict the sensors’ behavior in different working environments.


Author(s):  
Sebastien Martinie ◽  
Olivier Rozeau ◽  
Plamen Kolev ◽  
Patrick Scheer ◽  
Salim El Ghouli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document