The Role of Proactive Interference to Working Memory: How the Brain Resolve Proactive Interference?

2013 ◽  
Vol 21 (1) ◽  
pp. 48-58
Author(s):  
Rong LIU ◽  
Chunyan GUO ◽  
Chunhui LIU
2019 ◽  
Vol 84 (6) ◽  
pp. 1635-1654 ◽  
Author(s):  
Thomas S. Redick ◽  
Elizabeth A. Wiemers ◽  
Randall W. Engle

2001 ◽  
Vol 130 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Cindy Lustig ◽  
Cynthia P. May ◽  
Lynn Hasher

2021 ◽  
Vol 12 ◽  
Author(s):  
Stephanie K. Ries ◽  
Krista L. Schendel ◽  
Timothy J. Herron ◽  
Nina F. Dronkers ◽  
Juliana V. Baldo ◽  
...  

Proactive interference in working memory refers to the fact that memory of past experiences can interfere with the ability to hold new information in working memory. The left inferior frontal gyrus (LIFG) has been proposed to play an important role in resolving proactive interference in working memory. However, the role of white matter pathways and other cortical regions has been less investigated. Here we investigated proactive interference in working memory using the Recent Probes Test (RPT) in 15 stroke patients with unilateral chronic lesions in left (n = 7) or right (n = 2) prefrontal cortex (PFC), or left temporal cortex (n = 6). We examined the impact of lesions in both gray and white matter regions on the size of the proactive interference effect. We found that patients with left PFC lesions performed worse overall, but the proactive interference effect in this patient group was comparable to that of patients with right PFC lesions, temporal lobe lesions, and controls. Interestingly, the size of the interference effect was significantly correlated with the degree of damage in the extreme/external capsule and marginally correlated with the degree of damage in the inferior frontal occipital fasciculus (IFOF). These findings suggests that ventral white matter pathways connecting the LIFG to left posterior regions play a role in resolving proactive interference in working memory. This effect was particularly evident in one patient with a very large interference effect (>3 SDs above controls) who had mostly spared LIFG, but virtually absent ventral white matter pathways (i.e., passing through the extreme/external capsules and IFOF). This case study further supports the idea that the role of the LIFG in resolving interference in working memory is dependent on connectivity with posterior regions via ventral white matter pathways.


NeuroImage ◽  
2016 ◽  
Vol 127 ◽  
pp. 376-386 ◽  
Author(s):  
Sandra V. Loosli ◽  
Benjamin Rahm ◽  
Josef M. Unterrainer ◽  
Irina Mader ◽  
Cornelius Weiller ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Megan Roussy ◽  
Diego Mendoza-Halliday ◽  
Julio C. Martinez-Trujillo

Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe—classically associated with visual perception—similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.


2022 ◽  
Author(s):  
Mollie Hamilton ◽  
Ashley Ross ◽  
Erik Blaser ◽  
Zsuzsa Kaldy

Working Memory (WM), the ability to maintain information in service to a task, is characterized by its limited capacity. Several influential models attribute this limitation in a large extent to proactive interference (Anderson & Neely, 1996; Bunting, 2006; Kane & Engle, 2000), the phenomenon that previously encoded, now-irrelevant information competes with relevant information (Keppel & Underwood, 1963). Here, we look back at the adult PI literature, spanning over sixty years, as well as recent results linking the ability to cope with PI to WM capacity (Endress & Potter, 2014; Kane & Engle, 2000). In early development, WM capacity is even more limited (Kaldy & Leslie, 2005; Simmering, 2012), yet an accounting for the role of PI has been lacking. Our Focus Article aims to address this through an integrative account: since PI resolution is mediated by networks involving the frontal cortex (particularly, the left inferior frontal gyrus) and the posterior parietal cortex (Badre & Wagner, 2005; Jonides & Nee, 2006), and since children have protracted development and less recruitment (Crone et al., 2006) of these areas, the increase in the ability to cope with PI (Kail, 2002; De Visscher & Noel, 2014) is a major factor underlying the increase in WM capacity in early development. Given this, we suggest that future research should focus on mechanistic studies of PI resolution in children. Finally, we note a crucial methodological implication: typical WM paradigms repeat stimuli from trial-to-trial, facilitating, inadvertently, PI and reducing performance; we may be fundamentally underestimating children’s WM capacity.


Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


Sign in / Sign up

Export Citation Format

Share Document