scholarly journals Predictive coding in auditory cortex: The neural responses to sound repetition and auditory change

2019 ◽  
Vol 27 (12) ◽  
pp. 1996
Author(s):  
Xuejing LU ◽  
Xin HOU
2013 ◽  
Vol 25 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Jihoon Oh ◽  
Jae Hyung Kwon ◽  
Po Song Yang ◽  
Jaeseung Jeong

Neural responses in early sensory areas are influenced by top–down processing. In the visual system, early visual areas have been shown to actively participate in top–down processing based on their topographical properties. Although it has been suggested that the auditory cortex is involved in top–down control, functional evidence of topographic modulation is still lacking. Here, we show that mental auditory imagery for familiar melodies induces significant activation in the frequency-responsive areas of the primary auditory cortex (PAC). This activation is related to the characteristics of the imagery: when subjects were asked to imagine high-frequency melodies, we observed increased activation in the high- versus low-frequency response area; when the subjects were asked to imagine low-frequency melodies, the opposite was observed. Furthermore, we found that A1 is more closely related to the observed frequency-related modulation than R in tonotopic subfields of the PAC. Our findings suggest that top–down processing in the auditory cortex relies on a mechanism similar to that used in the perception of external auditory stimuli, which is comparable to early visual systems.


2000 ◽  
Vol 84 (3) ◽  
pp. 1453-1463 ◽  
Author(s):  
Jos J. Eggermont

Responses of single- and multi-units in primary auditory cortex were recorded for gap-in-noise stimuli for different durations of the leading noise burst. Both firing rate and inter-spike interval representations were evaluated. The minimum detectable gap decreased in exponential fashion with the duration of the leading burst to reach an asymptote for durations of 100 ms. Despite the fact that leading and trailing noise bursts had the same frequency content, the dependence on leading burst duration was correlated with psychophysical estimates of across frequency channel (different frequency content of leading and trailing burst) gap thresholds in humans. The duration of the leading burst plus that of the gap was represented in the all-order inter-spike interval histograms for cortical neurons. The recovery functions for cortical neurons could be modeled on basis of fast synaptic depression and after-hyperpolarization produced by the onset response to the leading noise burst. This suggests that the minimum gap representation in the firing pattern of neurons in primary auditory cortex, and minimum gap detection in behavioral tasks is largely determined by properties intrinsic to those, or potentially subcortical, cells.


2018 ◽  
Author(s):  
Christian D. Márton ◽  
Makoto Fukushima ◽  
Corrie R. Camalier ◽  
Simon R. Schultz ◽  
Bruno B. Averbeck

AbstractPredictive coding is a theoretical framework that provides a functional interpretation of top-down and bottom up interactions in sensory processing. The theory has suggested that specific frequency bands relay bottom-up and top-down information (e.g. “γ up, β down”). But it remains unclear whether this notion generalizes to cross-frequency interactions. Furthermore, most of the evidence so far comes from visual pathways. Here we examined cross-frequency coupling across four sectors of the auditory hierarchy in the macaque. We computed two measures of cross-frequency coupling, phase-amplitude coupling (PAC) and amplitude-amplitude coupling (AAC). Our findings revealed distinct patterns for bottom-up and top-down information processing among cross-frequency interactions. Both top-down and bottom-up made prominent use of low frequencies: low-to-low frequency (θ, α, β) and low frequency-to-high γ couplings were predominant top-down, while low frequency-to-low γ couplings were predominant bottom-up. These patterns were largely preserved across coupling types (PAC and AAC) and across stimulus types (natural and synthetic auditory stimuli), suggesting they are a general feature of information processing in auditory cortex. Moreover, our findings showed that low-frequency PAC alternated between predominantly top-down or bottom-up over time. Altogether, this suggests sensory information need not be propagated along separate frequencies upwards and downwards. Rather, information can be unmixed by having low frequencies couple to distinct frequency ranges in the target region, and by alternating top-down and bottom-up processing over time.1SignificanceThe brain consists of highly interconnected cortical areas, yet the patterns in directional cortical communication are not fully understood, in particular with regards to interactions between different signal components across frequencies. We employed a a unified, computationally advantageous Granger-causal framework to examine bi-directional cross-frequency interactions across four sectors of the auditory cortical hierarchy in macaques. Our findings extend the view of cross-frequency interactions in auditory cortex, suggesting they also play a prominent role in top-down processing. Our findings also suggest information need not be propagated along separate channels up and down the cortical hierarchy, with important implications for theories of information processing in the brain such as predictive coding.


2017 ◽  
Vol 25 (1) ◽  
pp. 423-430 ◽  
Author(s):  
Kayoko Okada ◽  
William Matchin ◽  
Gregory Hickok

2017 ◽  
Vol 372 (1714) ◽  
pp. 20160105 ◽  
Author(s):  
Rosy Southwell ◽  
Anna Baumann ◽  
Cécile Gal ◽  
Nicolas Barascud ◽  
Karl Friston ◽  
...  

In this series of behavioural and electroencephalography (EEG) experiments, we investigate the extent to which repeating patterns of sounds capture attention. Work in the visual domain has revealed attentional capture by statistically predictable stimuli, consistent with predictive coding accounts which suggest that attention is drawn to sensory regularities. Here, stimuli comprised rapid sequences of tone pips, arranged in regular (REG) or random (RAND) patterns. EEG data demonstrate that the brain rapidly recognizes predictable patterns manifested as a rapid increase in responses to REG relative to RAND sequences. This increase is reminiscent of the increase in gain on neural responses to attended stimuli often seen in the neuroimaging literature, and thus consistent with the hypothesis that predictable sequences draw attention. To study potential attentional capture by auditory regularities, we used REG and RAND sequences in two different behavioural tasks designed to reveal effects of attentional capture by regularity. Overall, the pattern of results suggests that regularity does not capture attention. This article is part of the themed issue ‘Auditory and visual scene analysis’.


2017 ◽  
Vol 115 (1) ◽  
pp. 186-191 ◽  
Author(s):  
Matthew Chalk ◽  
Olivier Marre ◽  
Gašper Tkačik

A central goal in theoretical neuroscience is to predict the response properties of sensory neurons from first principles. To this end, “efficient coding” posits that sensory neurons encode maximal information about their inputs given internal constraints. There exist, however, many variants of efficient coding (e.g., redundancy reduction, different formulations of predictive coding, robust coding, sparse coding, etc.), differing in their regimes of applicability, in the relevance of signals to be encoded, and in the choice of constraints. It is unclear how these types of efficient coding relate or what is expected when different coding objectives are combined. Here we present a unified framework that encompasses previously proposed efficient coding models and extends to unique regimes. We show that optimizing neural responses to encode predictive information can lead them to either correlate or decorrelate their inputs, depending on the stimulus statistics; in contrast, at low noise, efficiently encoding the past always predicts decorrelation. Later, we investigate coding of naturalistic movies and show that qualitatively different types of visual motion tuning and levels of response sparsity are predicted, depending on whether the objective is to recover the past or predict the future. Our approach promises a way to explain the observed diversity of sensory neural responses, as due to multiple functional goals and constraints fulfilled by different cell types and/or circuits.


2019 ◽  
Author(s):  
Kelly K Chong ◽  
Alex G Dunlap ◽  
Dorottya B Kacsoh ◽  
Robert C Liu

SUMMARYFrequency modulations are an inherent feature of many behaviorally relevant sounds, including vocalizations and music. Changing trajectories in a sound’s frequency often conveys meaningful information, which can be used to differentiate sound categories, as in the case of intonations in tonal languages. However, it is not clear what features of the neural responses in what parts of the auditory cortical pathway might be more important for conveying information about behaviorally relevant frequency modulations, and how these responses change with experience. Here we uncover tuning to subtle variations in frequency trajectories in mouse auditory cortex. Surprisingly, we found that auditory cortical responses could be modulated by variations in a pure tone trajectory as small as 1/24th of an octave. Offset spiking accounted for a significant portion of tuned responses to subtle frequency modulation. Offset responses that were present in the adult A2, but not those in Core auditory cortex, were plastic in a way that enhanced the representation of an acquired behaviorally relevant sound category, which we illustrate with the maternal mouse paradigm for natural communication sound learning. By using this ethologically inspired sound-feature tuning paradigm to drive auditory responses in higher-order neurons, our results demonstrate that auditory cortex can track much finer frequency modulations than previously appreciated, which allows A2 offset responses in particular to attune to the pitch trajectories that distinguish behaviorally relevant, natural sound categories.


Sign in / Sign up

Export Citation Format

Share Document