Probabilities Based Energy Balance Algorithms for Wireless Sensor Networks

2011 ◽  
Vol 30 (5) ◽  
pp. 1226-1229 ◽  
Author(s):  
Jin-feng Dou ◽  
Zhong-wen Guo ◽  
Jia-bao Cao ◽  
Guang-xu Zhang
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1368 ◽  
Author(s):  
Luoheng Yan ◽  
Yuyao He ◽  
Zhongmin Huangfu

The underwater wireless sensor networks (UWSNs) have been applied in lots of fields such as environment monitoring, military surveillance, data collection, etc. Deployment of sensor nodes in 3D UWSNs is a crucial issue, however, it is a challenging problem due to the complex underwater environment. This paper proposes a growth ring style uneven node depth-adjustment self-deployment optimization algorithm (GRSUNDSOA) to improve the coverage and reliability of UWSNs, meanwhile, and to solve the problem of energy holes. In detail, a growth ring style-based scheme is proposed for constructing the connective tree structure of sensor nodes and a global optimal depth-adjustment algorithm with the goal of comprehensive optimization of both maximizing coverage utilization and energy balance is proposed. Initially, the nodes are scattered to the water surface to form a connected network on this 2D plane. Then, starting from sink node, a growth ring style increment strategy is presented to organize the common nodes as tree structures and each root of subtree is determined. Meanwhile, with the goal of global maximizing coverage utilization and energy balance, all nodes depths are computed iteratively. Finally, all the nodes dive to the computed position once and a 3D underwater connected network with non-uniform distribution and balanced energy is constructed. A series of simulation experiments are performed. The simulation results show that the coverage and reliability of UWSN are improved greatly under the condition of full connectivity and energy balance, and the issue of energy hole can be avoided effectively. Therefore, GRSUNDSOA can prolong the lifetime of UWSN significantly.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3017 ◽  
Author(s):  
Xuesong Liu ◽  
Jie Wu

Wireless sensor networks are widely used in many fields. Nodes in the network are typically powered by batteries. Because the energy consumption of wireless communication is related to the transmission distance, the energy consumption of nodes in different locations is different, resulting in uneven energy distribution of nodes. In some special applications, all nodes are required to work at the same time, and the uneven energy distribution makes the effective working time of the system subject to the node with the largest energy consumption. The commonly used clustering protocol can play a role in balancing energy consumption, but it does not achieve optimal energy consumption. This paper proposes to use the power supply line to connect the nodes to fully balance the energy. The connection scheme with the shortest power line length is also proposed. On the basis of energy balance, the method of transmitting data with the best hop count is proposed, which fully reduces the power consumption of the data transmission. The simulation results show that the proposed method can effectively reduce the energy consumption and prolong the lifetime of wireless sensor networks.


Author(s):  
Goce Trajcevski ◽  
Oliviu Ghica ◽  
Peter Scheuermann ◽  
Marco Zuniga ◽  
Rene Schubotz ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianpo Li ◽  
Xue Jiang ◽  
I-Tai Lu

Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.


Sign in / Sign up

Export Citation Format

Share Document