scholarly journals A Method for Energy Balance and Data Transmission Optimal Routing in Wireless Sensor Networks

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3017 ◽  
Author(s):  
Xuesong Liu ◽  
Jie Wu

Wireless sensor networks are widely used in many fields. Nodes in the network are typically powered by batteries. Because the energy consumption of wireless communication is related to the transmission distance, the energy consumption of nodes in different locations is different, resulting in uneven energy distribution of nodes. In some special applications, all nodes are required to work at the same time, and the uneven energy distribution makes the effective working time of the system subject to the node with the largest energy consumption. The commonly used clustering protocol can play a role in balancing energy consumption, but it does not achieve optimal energy consumption. This paper proposes to use the power supply line to connect the nodes to fully balance the energy. The connection scheme with the shortest power line length is also proposed. On the basis of energy balance, the method of transmitting data with the best hop count is proposed, which fully reduces the power consumption of the data transmission. The simulation results show that the proposed method can effectively reduce the energy consumption and prolong the lifetime of wireless sensor networks.

Author(s):  
Fuseini Jibreel ◽  
Emmanuel Tuyishimire ◽  
I M Daabo

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from the hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, less data transmission to the Base station (BS). In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol ( HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. Results show that the proposed routing scheme outperforms two existing ones.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianpo Li ◽  
Xue Jiang ◽  
I-Tai Lu

Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.


Wireless sensor networks (WSN) are gaining attention in numerous fields with the advent of embedded systems and IoT. Wireless sensors are deployed in environmental conditions where human intervention is less or eliminated. Since these are not human monitored, powering and maintaining the energy of the node is a challenging issue. The main research hotspot in WSN is energy consumption. As energy drains faster, the network lifetime also decreases. Self-Organizing Networks (SON) are just the solution for the above-discussed problem. Self-organizing networks can automatically configure themselves, find an optimalsolution, diagnose and self-heal to some extent. In this work, “Implementation of Enhanced AODV based Self-Organized Tree for Energy Balanced Routing in Wireless Sensor Networks” is introduced which uses self-organization to balance energy and thus reduce energy consumption. This protocol uses combination of number of neighboring nodes and residual energy as the criteria for efficient cluster head election to form a tree-based cluster structure. Threshold for residual energy and distance are defined to decide the path of the data transmission which is energy efficient. The improvement made in choosing robust parameters for cluster head election and efficient data transmission results in lesser energy consumption. The implementation of the proposed protocol is carried out in NS2 environment. The experiment is conducted by varying the node density as 20, 40 and 60 nodes and with two pause times 5ms, 10ms. The analysis of the result indicates that the new system consumes 17.6% less energy than the existing system. The routing load, network lifetime metrics show better values than the existing system.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Guoqiang Zheng ◽  
Bing Li ◽  
Jishun Li ◽  
Huahong Ma ◽  
Baofeng Ji

Considering the constrained resource and energy in wireless sensor networks, an efficient data collection protocol named ESCDD which adopts the multihop routing technology and the single-node selection cooperative communication is proposed to make the communication protocol more simple and easy to realize for the large-scale multihop wireless sensor networks. ESCDD uses the greedy strategy and the control information based on RTS/CTS to select forwarding nodes. Then, the hops in the multihop data transmission are reduced. Based on the power control in physical layer and the control frame called CoTS in MAC layer, ESCDD chooses a single cooperative node to perform cooperative transmission. The receiving node adopts maximal ratio combining (MRC) to recover original data. The energy consumption per hop is reduced. Furthermore, the total energy consumption in data collection process is shared by more nodes and the network lifetime is extended. Compared with GeRaF, EERNFS, and REEFG protocol, the simulation results show that ESCDD can effectively reduce the average delay of multihop data transmission, improve the successful delivery rate of data packets, significantly save the energy consumption of network nodes, and make the energy consumption more balanced.


2021 ◽  
Author(s):  
Shikhar Suryavansh ◽  
Abu Benna ◽  
Chris Guest ◽  
Somali Chaterji

Abstract Data transmission accounts for significant energy consumption in wireless sensor networks where streaming data is generated by the sensors. This impedes their use in many settings, including livestock monitoring over large pastures (which forms our target application). We present Ambrosia, a lightweight protocol that utilizes a window-based timeseries forecasting mechanism for data reduction. Ambrosia employs a configurable error threshold to ensure that the accuracy of end applications is unaffected by the data transfer reduction. Experimental evaluations using LoRa and BLE on a real livestock monitoring deployment demonstrate 60% reduction in data transmission and a 2X increase in battery lifetime.


2013 ◽  
Vol 284-287 ◽  
pp. 2064-2068
Author(s):  
Jiun Huei Ho ◽  
Hong Chi Shih ◽  
Bin Yih Liao ◽  
Jeng Shyang Pan

In this paper, a grade diffusion algorithm is proposed to solve the sensor node’s transmission problem and the sensor node’s loading problem in wireless sensor networks by to arrange the sensor node’s routing. In addition to them, the sensor node also can save some backup nodes to reduce the energy consumption for the re-looking routing by our proposed algorithm in case the sensor node’s routing is broken. In the simulation, the grade diffusion algorithm can save 28.66% energy and increase 76.39% lift time than the tradition algorithms for sensor node. Moreover, our proposed algorithm has the less data package transmission loss and the hop count than the tradition algorithms in our simulate setting. Hence, in addition to balance the sensor node’s loading and reduce the energy consumption, our algorithm can send the data package to destination node quickly and correctly.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877253 ◽  
Author(s):  
Anfeng Liu ◽  
Wei Chen ◽  
Xiao Liu

In order to solve the problem of spectrum scarcity in wireless sensor networks, cognitive radio technology can be introduced into wireless sensor networks, giving rising to cognitive radio sensor networks. Delay-sensitive data applications in cognitive radio sensor networks require efficient real-time communication. Opportunistic pipeline routing is a potential technology to reduce the delay, which can use nodes outside the main forwarding path forward data opportunistically when the transmission fails. However, the energy efficiency of cognitive radio sensor networks with opportunistic pipeline routing is low, and the data transmission delay can be further optimized. In view of this situation, we propose the delay optimal opportunistic pipeline routing scheme named Variable Duty Cycle for Opportunistic Pipeline Routing (VDCOPR). In the Variable Duty Cycle for Opportunistic Pipeline Routing scheme, the nodes employ high duty cycle in the area far from the sink, and low duty cycle in the area near to the sink, which can achieve the balance of energy consumption and reduce the data transmission delay while not affecting network lifetime. The theoretical analysis and experimental results show that, compared with previous opportunistic pipeline routing, energy consumption of network is relatively balanced and the data transmission delay can be reduced by 36.6% in the Variable Duty Cycle for Opportunistic Pipeline Routing scheme.


Sign in / Sign up

Export Citation Format

Share Document