Compliant Grasp Strategy for Three-fingered Space Robot End-effector

ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 427-433 ◽  
Author(s):  
Qingli ZHANG ◽  
Fenglei NI ◽  
Yingyuan ZHU ◽  
Jin DANG ◽  
Hong LIU
Keyword(s):  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Haibo Zhang ◽  
Dayi Wang ◽  
Chunling Wei ◽  
Bing Xiao

This paper presents a novel solution to the control problem of end-effector robust trajectory tracking for space robot. External disturbance and system uncertainties are addressed. For the considered robot operating in free-floating mode, a Chebyshev neural network is introduced to estimate system uncertainties and external disturbances. An adaptive controller is then proposed. The closed-loop system is guaranteed to be ultimately uniformly bounded. The key feature of this proposed approach is that, by choosing appropriate control gains, it can achieve any given small level ofL2gain disturbance attenuation from external disturbance to system output. The tracking performance is evaluated through a numerical example.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yong Wang ◽  
Ying Liao ◽  
Kejie Gong

Trajectory planning is a prerequisite for the tracking control of a free-floating space robot. There are usually multiple planning objectives, such as the pose of the end-effector and the base attitude. In efforts to achieve these goals, joint variables are often taken as exclusive operable parameters, while the berth position is neglected. This paper provides a novel trajectory planning strategy that considers the berth position by applying screw theory and an optimization method. First, kinematic equations at the position level are established on the basis of the product of exponential formula and the conservation of the linear momentum of the system. Then, generalized Jacobian matrices of the base and end-effector are derived separately. According to the differential relationship, an ordinary differential equation for the base attitude is established, and it is solved by the modified Euler method. With these sufficient and necessary preconditions, a parametric optimization strategy is proposed for two trajectory planning cases: zero attitude disturbance and attitude adjustment of the base. First, the berth position is transformed into the desired position of the end-effector, and its constraints are described. Joint variables are parameterized using a sinusoidal function combined with a five-order polynomial function. Then, objective functions are constructed. Finally, a genetic algorithm with a modified mutation operator is used to solve this optimization problem. The optimal berth position and optimized trajectory are obtained synchronously. The simulation of a planar dual-link space robot demonstrates that the proposed strategy is feasible, concise, and efficient.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yicheng Liu ◽  
Kedi Xie ◽  
Tao Zhang ◽  
Ning Cai

In order to obtain high precision path tracking for a dual-arm space robot, a trajectory planning method with pose feedback is proposed to be introduced into the design process in this paper. Firstly, pose error kinematic models are derived from the related kinematics and desired pose command for the end-effector and the base, respectively. On this basis, trajectory planning with pose feedback is proposed from a control perspective. Theoretical analyses show that the proposed trajectory planning algorithm can guarantee that pose error converges to zero exponentially for both the end-effector and the base when the robot is out of singular configuration. Compared with the existing algorithms, the proposed algorithm can lead to higher precision path tracking for the end-effector. Furthermore, the algorithm renders the system good anti-interference property for the base. Simulation results demonstrate the effectiveness of the proposed trajectory planning algorithm.


2021 ◽  
Author(s):  
Rabindra A. Gangapersaud

This study addresses the problem of detumbling a non-cooperative space target, such as a malfunctioning satellite, using a space robot for the purpose of performing on-orbit servicing. The space robot is denoted as the servicer and consists of a satellite base equipped with a robotic manipulator. The formulation of a detumbling control strategy must respect limits on the grasping force and torque at the servicer’s end-effector without knowledge of the target’s inertial parameters (mass, inertia tensor, location of center of mass). In the literature, prior studies have formulated detumbling strategies under the assumption of accurate knowledge of the target’s inertial parameters. However, obtaining accurate estimates of the target’s inertial parameters is difficult, and parameter uncertainty may lead to instability and violation of the end-effector force/torque limits. This study will address the problem of detumbling a noncooperative target with unknown but bounded inertial parameters subjected to force/torque limits at the servicer’s end-effector. In this study, two detumbling control strategies are presented. The first detumbling strategy is presented under the assumption that force/torque measurements at the end-effector are available. Detumbling of the target is achieved by applying a reference force/torque to the target that is designed to bring the target’s tumbling motion to rest subjected to force/torque limits. To ensure stable detumbling of the target, a robust compensator is designed based on bounds of the target’s unknown inertial parameters. Furthermore, once the detumbling process starts, in order to reduce the robust control gains, bounds on the target’s unknown inertial parameters are estimated in real-time. The resultant detumbling controller enables the servicer to detumble the target while complying with the target’s unknown residual tumbling motion. The second detumbling control strategy is developed without the need of end-effector’s force/torque measurements and takes into account magnitude constraints on servicer’s control inputs in the detumbling controller’s design. Detumbling is achieved by tracking a desired detumbling trajectory that is delineated subjected to end-effector force/torque limits and requires bounds on the target’s inertial parameters. The hyperbolic tangent function is utilized to model the magnitude constraints on the servicer’s control inputs, resulting in a system that is non-affine in its control inputs. As a result, an augmented model of the servicer is presented to allow the formulation of the detumbling controller. Using bounds on the target’s inertial parameters, robust adaptive control approach is utilized to design the detumbling controller with the backstepping technique in order to track the desired detumbling trajectory and to reject the gained target’s momentum. Numerical simulation studies were conducted for both detumbling control strategies utilizing a servicer equipped with a 7-degree-of-freedom (DOF) manipulator. The results demonstrate that both control strategies are capable of detumbling a non-cooperative target with unknown inertial parameters subjected to force/torque limits. Experiments conducted with a 3-DOF manipulator demonstrate that the design procedure utilized to delineate the desired detumbling trajectory in the second detumbling strategy respects force/torque limits at the end effector. The study is concluded with a discussion comparing the two proposed detumbling strategies by highlighting their advantages and disadvantages.


Author(s):  
Hongwen Zhang ◽  
Zhanxia Zhu ◽  
Biwei Tang ◽  
Jianping Yuan

When using space robot to capture target like failed satellite, the force impulse between the target and the end-effector of space robot will load the base satellite with additional momentum abruptly. When capture happens, the pre-impact configuration can influence augmentations of partial momentum of the base and the manipulator. In order to realize a pre-impact configuration, which can reduce the partial momentum augmentations, the control of all link centroid together with end-effector by path planning is very important. In this paper, we establish a basic velocity kinematic equation for all link centroid, which describes the basic linear kinematic relationship between the linear velocity of all link centroid and linear and angular velocities of the base, joint angular velocity of the manipulator, where this basic velocity kinematic equation can be developed into kinematic equations for all link centroid under different kinds of working modes such as free-floating working mode. All link centroid can be controlled by path planning with this equation. Besides, velocity kinematic equation for all link centroid of space robot under a specific working mode is similar to the velocity kinematic equation for end-effector of space robot under the same working mode, so all link centroid can be controlled together with end-effector by path planning. We have derived velocity kinematic equations for all link centroid of space robot with a free-floating base and a fixed base. Both of them are verified by numerical simulations. The motions of position and attitude of the base and the manipulator end caused by all link centroid motion are also shown by simulation study. We also realize the simultaneous path tracking of all link centroid and end-effector for a fixed base space robot.


Author(s):  
Rui Qu ◽  
Yuto Takei ◽  
Mitsushige Oda ◽  
Hiroki Nakanishi ◽  
Armin Wedler ◽  
...  

Author(s):  
Hongwen ZHANG ◽  
Zhanxia ZHU ◽  
Jianping YUAN

Motion planning is one of the fundamental technologies for robots to achieve autonomy. Free-floating space robots composed manipulators and base satellite that do not actively control its position and attitude has nonholonomic characteristics, and there is a first-order differential relationship between its joint angle and the base attitude. In addition, the planning framework which first converts the goal end-effector pose to its corresponding target configuration, and then plan the trajectory from the initial configuration to the goal configuration still has the following problems: the goal configuration and the initial configuration may not be in the same connected domain. Based on the RRT framework, the motion planning of a free-floating space robot from the initial configuration to the goal end-effector pose is studied. In the algorithm design, in order to deal with the differential constraints of the free-floating space robot, and the requirement that the attitude disturbance of its base cannot exceed its limit, a control-based local planner for random configuration guiding growth of the tree and a control-based local planner for goal end-effector pose guiding growth of the tree that can adjust the attitude of the base when necessary are proposed. The former can ensure the effective exploration of the configuration space, and the latter can avoid the occurrence of singularity while ensuring that the algorithm converges quickly and the base attitude disturbance meets the constraints. The present algorithm does not need to solve the inverse kinematics, can successfully complete the planning task, and ensure that the base attitude disturbance meets the requirements. The simulation verifies the effectiveness of the algorithm.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Liu ◽  
Zainan Jiang ◽  
Hong Liu ◽  
Wenfu Xu

The geometric parameters of a space robot change with the terrible temperature change in orbit, which will cause the end-effector pose (position and orientation) error of a space robot, and so weakens its operability. With this in consideration, a new geometric parameter identification method is presented based on a laser-ranger attached to the end-effector. Then, independence of the geometric parameters is analyzed, and their identification equations are derived. With the derived identification Jacobian matrix, the optimal identification configurations are chosen according to the observability indexO3. Subsequently, through simulation the geometric parameter identification of a 6-DOF space robot is implemented for these identification configurations, and the identified parameters are verified in a set of independent reference configurations. The result shows that in spite of distance measurement alone, pose accuracy of the space robot still has a greater improvement, so the identification method is practical and valid.


Sign in / Sign up

Export Citation Format

Share Document